INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED'09
24 - 27 AUGUST 2009, STANFORD UNIVERSITY, STANFORD, CA, USA

AUTOMATED ANALYSIS OF PRODUCT
DISASSEMBLY TO DETERMINE ENVIRONMENTAL
IMPACT

David lkechukwu Agu' and Matthew I. Campbell?
(1) The University of Texas at Austin, USA (2) The University of Texas at Austin, USA

ABSTRACT

Manufacturers are increasingly being held responsible for the fate of their products during the end-of-
life phase. In this research, a product’s end-of-life environmental impact is calculated as a function of
cost and recyclability. Cost is associated with the time and effort of removing specific components.
Recyclability is governed both by the material used and how components of different materials are
connected. This paper presents a graph grammar based algorithm which will analyze any product
given information concerning individual components and how they are connected within the overall
assembly. The result of this analysis is a set of Pareto optimal candidates representing various stages
in the disassembly process and evaluated using associated costs and recyclability. This Pareto set can
be used to judge a product’s end-of-life suitability against the manufacturer’s or industry standards, or
against the suitability of a similar product.

Keywords: Automated disassembly, environmental impact, Pareto

1 INTRODUCTION

The consumer product market is continually evolving. Traditionally, we have used and discarded
products with little regard for the environmental impact of our actions. Recently however, there have
been signs that these practices are changing. On one hand, closer attention has been paid to the
consumption of raw materials. Many resources are in increasingly scant supply and close attention
must be paid to ensure that the limited reserves which are still available are not used to the point of
exhaustion. On the other hand, disposal practices are also being investigated. Disposal falls into what
is called the “end-of-life” phase of a product. In recent years producers have begun to pay more
attention to the fate of their products once they reach their end-of-life. In fact, recent legislation, called
Extended Producer Responsibility (EPR) initiatives, has begun to ensure this change.

The United States currently lags behind other economically developed countries in formally regulating
producer responsibility in the end-of-life phase. The European Union and Japan have already enacted
government legislation which forces producers to meet certain environmentally-conscious standards
with their products. EPR mandates that certain requirements are met before a specific product is
allowed to reach the market. The United States has begun to look in this same direction however EPR
legislation currently exists only at the state level [1]. As of May 2009, thirty states have passed
varying levels of EPR initiatives into law but there are no signs that federal legislation will be enacted
in the near future [2]. This becomes particularly relevant after realizing how much waste the United
States produces and the degree to which waste processing is becoming a sizeable industry. For
example, in 2006 exports of waste from the United States to China were valued at $6.7 billion [3]. In
addition to the legislative aspects, producers also cater to increasingly selective customers. Many
consumers in the United States now make selections depending on the “environmental friendliness” of
one product over another.

For these reasons, environmental considerations are becoming increasingly important for producers.
This research proposes a tool which can be used to evaluate the environmental impact of any given
product. Such a tool would be useful for both producers and consumers and also those responsible for
enforcing and verifying any environmental standards.

ICED'09 7-217

2 DEFINING ENVIRONMENTAL IMPACT

Before evaluating a product’s performance, environmental impact must be defined. The environmental
impact would be of interest at the end-of-life phase of a product when disassembly is to take place.
The goal of the disassembly process may be to separate components from each other for repair and
resale, or to separate down to the raw materials so that they can be recycled. This process occurs in a
series of steps which begins with an entire product and progressively separates individual components
away from the main assembly. Each step in the process can be evaluated based on cost and
recyclability. Cost is considered to be a function of the time taken to disassemble a product and also
the value of the materials contained within the assembly. Recyclability is linked with a parameter
called wasted weight which is the amount of material still contained within the assembly which cannot
be recycled. A component within the assembly cannot be recycled if it is connected to another
component which is of a different material type and so both of their weights are included in the total
wasted weight. It is these parameters which are used to define the environmental impact of a product,
not only at its completely disassembled state but at various stages in the disassembly process.

For any given product there may be many different orders in which it may be taken apart. Depending
on the order, the disassembly time may vary. It would be advantageous to know which order
minimizes the disassembly time and simultaneously minimizes the wasted weight prior to committing
to a particular disassembly sequence. This research culminates in a computer-based tool which can
both automate and optimize the disassembly process, and simultaneously present results on the
environmental impact of the product.

3 AUTOMATED DISASSEMBLY

The first step in evaluating a product is to run a simulation of the disassembly process based on a
suitable graphical representation of the assembly. This project was initiated by the Automated Design
Lab at the University of Texas at Austin which had previously developed a software tool called
GraphSynth [4] for use in automated design projects. This tool provides a convenient means for both
representing product assemblies and analyzing their disassembly.

Automated disassembly is not a new field of mechanical design. Many different methods have been
created to both represent product assemblies and evaluate their disassembly. In GraphSynth, the user is
allowed to build a graph-based representation of any product. In the approach used here, nodes
represent product components while arcs, which connect nodes to each other, represent connections
between two components (e.g. welds, screws, etc.).

Complete disassembly is often not the goal of the disassembly process. For example, if repairs are
being made to a product, only one component needs to be removed and it would be beneficial to find
the easiest method of reaching a specific, faulty component. However, when looking at the recycling
and reuse of components, the goal would likely be to find a more complete disassembly sequence.
Therefore, when looking at the disassembly process it is very important to differentiate component
connection types from each other.

3.1 Component Connection Types

Before beginning a discussion of the different connection types that have been used in this research it
is important to point out the coordinate system that is used in defining certain connection types. An
inertial, Cartesian coordinate system with dual polarity (positive and negative) in each of three
directions (X, Y and Z) is used. The coordinate axes are to be defined by the user in the most logical
and/or convenient orientation with respect to the fully assembled product.

The approach used to build a list of component connection types was to take existing products and
systematically remove components from them while taking note of the various connections being
used. This approach is an ongoing process since the investigation of more diverse products will likely
lead to the discovery of different connection types. At present, three products have been investigated:
a Dell Latitude laptop, a Toro Model #51586 leaf blower and a Troy-Bilt TB190BV leaf blower. The
connections which have been found so far can be divided into the following categories: rectangular
constraints, virtual rectangular constraints, radial constraints, threaded fasteners, press fits, adhesives
and windings. Each arc in the graphical representation must have at least one connection type and this
information is stored as a label within the arc.

Two additional arc types which often do not represent actual, physical connections are the rectangular
and virtual rectangular constraints. A rectangular constraint exists between two objects when, due to

7-218 ICED'09

the positioning of one component with respect to another, one of the components cannot be removed
from the entire assembly if translated in a specific direction. The virtual rectangular constraint is very
similar but the two connected or related objects would only come into contact if another is removed
first. This concept is explained further in section 3.2 with the cascading rule. The graphical
representation of a rectangular constraint between two components in GraphSynth is shown in Figure
1.

o Graph Display Window #1 = |2] -

~

I\~
|:
]

Ny
i

]

nodal ""Dd‘El
(rectConstraint+X)

Figure 1. Rectangular constraint in GraphySynth (left) and a three-dimensional representation of the
situation (right).

The graphical representation can easily be understood by forming a statement from what is depicted. It
can be said that node0 is constrained by nodel in the positive X direction by a rectangular constraint.
Therefore (and this is true for all rectangular constraints) there would also be a rectangular constraint
imposed on nodel on by node0 along the same Cartesian axis but with opposite polarity. When
building the entire assembly it is not necessary for the user to draw both arcs in each pair of
rectangular constraints. The user may simply draw one labeled arc and a series of “fixer rules” — which
will be explained in section 3.2 — will automatically draw the second arc with an appropriate label.
Since there is one type of rectangular constraint for each polar direction along each Cartesian axis,
there are a total of six rectangular constraints that may be used to describe a real system. The labels
corresponding to each of these constraints is written as rectConstraint followed by a directional suffix,
e.g. +X or —Z.

The second group of connections, radial constraints, works much in the same way as rectangular
constraints visually however their meaning is slightly different. Radial constraints are used most often
for components positioned around a shaft. In this case the directional subscript after the constraint
name (radConstraint) does not have polarity attached to it. The direction indicates the Cartesian axis
along which the axis of the shaft is directed. Therefore, there are only three types of radial constraints.
Like rectangular constraints, radial constraints also exist in pairs between components however —
unlike rectangular constraints — they are identical since polarity does not exist. Another interesting
relationship between radial and rectangular constraints is that radConstraintX, for example, carries
nearly identical meaning to the following set of rectangular constraints: rectConstraint+Y,
rectConstraint-Y, rectConstraint+Z and rectConstraint-Z.

Threading constraints exist between two components which have adjacent threaded surfaces. There are
six possibilities within the thread group (thread+X, etc.). The directional suffix indicates the direction
in which one of the two components is removed. Unlike the two previous groups, thread constraints do
not exist in pairs. There is only one arc between the two components in question and the arc is directed
(depicted graphically with an arrow) towards the object which is removed. This object is typically a
screw, a bolt or a nut.

The press fit group is self-explanatory and exists between objects which are press-fitted together. Like
rectangular constraints there are six variations. The directional suffix indicates the direction in which a
specific component is press-fitted onto/into another. For example if an arc originates from node0,
terminates at nodel and carries the label pressFit+X then component 0 is press-fitted onto component
1 in the positive X direction.

The adhesive group is unique in that there are no directional suffixes and the graphical representation
features arcs which have arrowheads on both ends (as shown in Figure 2). This “group” therefore only
contains one connection possibility. The constraint exists when two components are joined using any
type of adhesive.

ICED'09 7-219

o= Graph Display Window #1 =N ER |

n*g =nndel

(adhesive)

Figure 2. Adhesive constraint.

The winding rules represent situations in which one component is wound around another. This may be
used in instances such as a length of tape wrapped around parts or electrical wire wrapped in a coil.
The three variations correspond to the three Cartesian axes. The axial direction of the “shaft” which
the coil is wound around is the direction assigned to the winding arc. The arc originates at the node
representing the shaft and terminates at the node representing the wound material.

With this completed list of component connection types it is possible to create a graphical
representation of a completed product. Graphical representations of the leaf-blowers from Toro and
Troy-Bilt can be seen in Appendix A and Appendix B respectively. Also take note that in each of
these diagrams a directional suffix can be seen in the top left-hand corner of the window. This
direction gives the disassembly algorithm a starting orientation for the product and is intended to make
the computer simulation more realistic. Many disassembly operations, such as removing a bolt, are
performed with the product resting on a table. As was stated previously, the user chooses the
orientation of the coordinate system with respect to the product. Using this pre-defined orientation, the
user would also choose one of the six surfaces (virtually estimating the assembly to be contained
within a rectangular prism) to start off resting on a table. This surface is what is indicated in the top
left-hand corner and within the program is termed a global variable. Now that the connection types are
known it is necessary to define how these connections can be removed if a simulation representing a
real-life disassembly process is to be run.

3.2 Disassembly Grammar Rules

After defining types of component connectivity, it is necessary to define the methods which are used
to disassemble a product. A series of “grammar rules” have been created along with the various
conditions necessary for their recognition and application. Each one of these grammar rules represents
an actual method of separating two components, such as the adhesive between two components. There
are four groups of grammar rules which are termed rule sets and can be described as follows:

e Rule set #0: Fixer rules,

e Rule set #1: Disassembly rules,

e Rule set #2: Flip rules,

e Rule set #3: Module rule.

The easiest of these four groups to understand in the context of the disassembly process and also the
most important in terms of analyzing this process is rule set #1. The rules in this set estimate the
separation of components from each other as a product is being disassembled. In GraphSynth grammar
rules are displayed visually as having a left and right hand side. The grammar rule that breaks an
adhesive bond between two components is shown in Figure 3.

al 22, adhesiveRule.gnaml =B]

Left Hand Side (recognize sub-graph)

Right Hand Side (apply sub-graph)

[Nw__ ”l" 10

[ngiiSat]o

[Not_set] (adhesive)
Figure 3. Adhesive grammar rule.

7-220 ICED'09

The left hand side of the grammar rule is used for rule recognition. The image is visually matched with
an identical set of nodes and arcs in the graph of the overall assembly. The right hand side is used for
rule application and shows the result of the application of the rule. Therefore this rule is recognized
whenever two components are bonded together with an adhesive and the application of the rule results
in the removal of the adhesive connection, whether it is by hand or with some type of solvent (these
can be specified by providing extra information which will be explained in section 4.2). Each of the
connections specified in section 3.1 has a corresponding grammar rule which describes how a
connection between components is separated. There there are six grammar rules for rectangular
constraints, three grammar rules for radial constraints and so on; this leads to a total of 26 disassembly
rules.

The fixer rule set, rule set #0, does not include any disassembly operation information. Rather, this
rule is included to save time while creating the graph of a product assembly and to fix some of the
errors that a user may easily make. The rectangular “single” fixer will add the second arc — with
corresponding labels — which exists between nodes if the user only draws one of the two rectangular
constraints. The rectangular “double” fixer checks the pair of arcs and makes sure that the labels are
correct. For example, if the user chooses to draw both arcs but only includes labels with directions of
+X and —Z on one arc, the fixer rule will automatically add labels with directions of —X and +Z on the
second arc. Similar fixer rules exist for radial and press-fitted connections. The final rule in this rule
set is called the “cascade rule” and provides a way around a common problem which would otherwise
underconstrain some components. The cascading rule establishes relationships between pairs of
components which are not in contact by looking at their respective relationships with components
which they are both in contact with. This is done because in certain situations the removal of a
component which is between two other non-touching components can leave the assembly
underconstrained. The cascading rule searches for locations in the assembly which have the potential
to develop this problem and adds virtual rectangular constraints which will prevent it. The fixer rule
set contains a total of five rules.

Rule set #2, the flip rule set, returns to the important fact that the process of recognizing and applying
grammar rules is meant to estimate real-life disassembly sequences. The importance of the global
variable was touched on earlier and it is a key factor in determining whether or not the flip rule set is
used. Depending on the orientation of the assembly (specified by the global variable) certain grammar
rules will not be recognized. For example if the +Z surface of the product is defined to be resting on a
table then a rule which removes an arc carrying the label thread+Z (which would entail the removal of
a screw in the +Z direction) could not be applied. If the simulation recognizes that there are no
possible rules left to apply but further rule application would be possible if the assembly were in a
different orientation, then the flip rule set will automatically flip the assembly into the desired
position. Rather than changing the global variable, the flip grammar rules would change the polarity of
all arcs within the graph along the Cartesian axis containing potentially applicable rules. So for this
example of a threaded connection, the global variable would remain +Z but the thread+Z label would
be changed to thread-Z and would therefore be eligible to be removed. All other labels with a +Z
directional suffix would be changed to -Z and likewise -Z would be switched to +Z. There are six rules
within the flip rule set, one for each of the possible rotations which could potentially flip the product
into a more desirable orientation.

Before explaining the changes made by applying the single rule contained within the module rule set
(rule set #3), the concept of a module must first be explained. A module is any component within an
assembly which may be modeled as either a single component or as a collection of components. For
example, in the leaf blower assemblies depicted in the appendices, the motor may be considered to be
either a single component or a collection of all of the components which make up the motor. The
reason why this is important is that it may sometimes be desirable to leave the module as one
component and not to disassemble it any further. The module rule set gives the user this option. If the
user wishes to disassemble the motor then the module rule will be applied otherwise it will not and the
disassembly process will be stopped. If a module does exist in an assembly, the nodes representing
each of the module components are drawn as well as a node representing the module as a whole. In the
appendices, arcs carrying the label of “module” can be seen. These are the only arcs which do not
convey information regarding physical connections between components. Instead these arcs connect
the single module node with each of its components. The application of the module rule will delete
each of these module arcs as well as the module node, indicating that the process of removing the

ICED'09 7-221

individual components will begin. Figure 4 below shows a hypothetical motor which consists of four
components before (left) and after (right) application of the module rule. Note that the module node
and the arcs approximate a hyperarc that spans all the motor component nodes.

o' Graph Display Window #1 El@ 5! Graph Display Window £2 = II:_EI__H_-:S_(_Z__]
motorComponent2
motorComponent2
motorComponentd
motorComponent3
motorComponentd moterCompenent3
.otorComponentl
maotorComponentl

larc? (phodule)

Figure 4. A module before (left) and after (right) module rule application.

The relationships between rule sets are also important since they must be used in a certain order if they
are to function correctly. The fixer rule set is used first and will automatically apply rules until none
are recognized. At this point the disassembly rule set is used and rules will be applied until no more
are recognized. Then the flip rule set is used. If one of the flip grammar rules is recognized and
applied, then the process returns to the disassembly rule set, otherwise the process proceeds to the
module rule set. If no grammar rules are applied here, the disassembly process is terminated but if the
module rule is applied then the process again returns to the disassembly rule set. This sequence of
switching from one rule set to another estimates the real-life decisions which are required to either
fully or partially disassembly any product.

Rule Set #0 Rule Set #1
W Loop Until No Loop Until No
Rules Recognized Rules Recognized
Fixer Rules Disassembly Rules
Yes Rule Set #3 Yes Rule Set #2
Ru.le Maximl:|m 1 Rule Ru.le | MaximL.Jm 1 Rule
No 1| Applied? Application No | Applied? Application
Module Rule Flip Rules

Figure 5. Rule set flowchart.

Now that the process for simulating product disassembly is formulated we would like to use it to attain
real information regarding our two important parameters: disassembly time and wasted weight. In
order to do this we still need to supply the program with information regarding the components
themselves.

4 CALCULATIONS

4.1 Resulting Parameters

The ultimate goal of the computer simulation is to evaluate the process of disassembling a product and
therefore the product itself. To reiterate, the two most important parameters which are used in
evaluating this process are the disassembly time and the wasted weight. These two parameters are
themselves functions of properties of the components within the product (nodes within the graph) and
their connections to each other (arcs within the graph).

7-222 ICED'09

In a physical disassembly sequence each individual step has a time associated with it depending on a
variety of variables. The time required to remove a screw for example is a function of the head type,
the type of tool used and the length of threads being disengaged. All of the information required for
time calculations is stored within the arcs and nodes in GraphSynth. These variables are stored in a list
and each position in the list holds a specific piece on information.

4.2 Required User Inputs

All nodes are capable of holding the same information however not all of it is required for each type of
disassembly operation. Some grammar rules, such as those for windings, press-fitted and adhesive
operations, require information to be stored in arcs rather than nodes. It may be intuitive to think of
these operations as the breaking of a physical bond between two components rather than effortlessly
changing the positions of two components with respect to each other. This is why the arcs rather than
the nodes hold the most relevant information in these cases.

For both nodes and arcs the lists which hold relevant variables are in a specific order. Within nodes
there are ten variable positions. The information in the first two positions should be thought of as
mandatory regardless of the disassembly process which will be performed. Position 0 contains the
material type. Position 1 is the weight of the component. The material type is required to accurately
tell the simulation when to stop while the weight is required to accurately calculate the wasted weight.
Positions 2 and 3 are geometric parameters: size and thickness. The definitions of these are specific as
defined in “Product Design for Assembly” by Boothroyd and Dewhurst [5] for reasons which will be
explained shortly. Positions 4, 5, 6 and 7 are also values defined by Boothroyd and Dewhurst’s work
and contain information about physically handling the component in question. It is not a strict
requirement that all of the positions contain information since default values will be assumed when it
is time to perform the disassembly time and wasted weight calculations. However the values for these
two parameters become more accurate as the user supplies more information. Positions 8 and 9 contain
information that is only relevant to specific threaded components. Position 8 contains a combination of
screw head type and hand-driven versus power-tool removal information and position 9 supplies the
thread length. Positions 8 and 9 hold all of the information necessary to calculate the removal time of a
threaded component [6].

“Product Design for Assembly” provides calculations which are necessary when calculating the time
associated with rectangular and radial grammar rules. All of the actions performed in these rule groups
involve gripping and moving components from their current position to some place outside of the
confines of the assembly. The times associated with these actions are all functions of the weight and
geometric dimensions of the components in question.

As was stated previously, only grammar rules in the press fit group and the adhesive rule require
certain arcs to contain variables. The adhesive rule expects the adhesive arc which it is removing to
contain one variable which states what type of adhesive is being used. The disassembly time required
to remove the adhesive should only be a function of this adhesive type. For press-fitted connections,
the single variable corresponds to a value taken from Boothroyd and Dewhurst. Winding arcs contain
two variables: one is the number of turns while the other is the coil diameter. These are used to
determine the unwind time.

5 EVALUATION

In existing work within the field of automated design, the tree of disassembly operations is often
called a disassembly tree. The disassembly tree most often terminates at states in which the product is
completely disassembled. Since the approach taken here allows for the inclusion of component
material data, information which often is not considered, our terminal states do not necessarily contain
the fully disassembled product. In realistic disassembly processes, if the goal of disassembly is to
organize components for recycling, it does not make sense to separate a group of components if they
are composed of the same material. This homogeneous group would likely remain assembled and be
recycled as a whole. In this research the tree terminates once the assembly is reduced to a number of
materially homogeneous groups, once again emphasizing the importance of disassembly order. Each
node in the tree is evaluated in terms of the two primary parameters: disassembly time and wasted
weight.

The method of evaluation is a significant strength of this method over similar, previous research.
Many methods of representing disassembly trees such as Homem de Mello and Sanderson’s AND/OR

ICED'09 7-223

hypergraph exhibit a common weakness in their evaluation [7]. Since these methods concentrate on
general representation of the tree and not on representation of the assembly, their results include
computational time rather than the more realistic and more useful property of disassembly time. The
assembly representation in this method captures information about how components fit together, rather
than simply how they are positioned relative to one another. Other methods concentrate on this latter
group of characteristics and therefore their resultant evaluations take neither disassembly time nor
disassembly cost into account.

An iterative-deepening A* (IDA*) [8] approach is used to search the disassembly tree. A number of
different tree-search algorithms were investigated but IDA* proved to be the fastest technique which
also produces a complete set of Pareto candidates for a given product. This Pareto set presents the
completed product, the completely disassembled product as well as various points in between.

6 RESULTS

Example simulations have been run using the aforementioned leaf blower models. Instead of using the
entire graphical assemblies, two simplified models have been used. This was done to cut down on the
computational time of the simulations. Rather than considering the motor modules to be collections of
components, each of the leaf blower motors have been assumed to be singular components. A photo of
the components of the simplified Toro assembly is shown in Figure 6 below and its GraphSynth
assembly representation in Figure 7 (compare to the full assembly in Appendix A).

Figure 6. Components of the Toro Model #51586 leaf blower.

7-224 ICED'09

a2 leaf_blower_simple.gxml [E=R(EH <0

Z plastichozzle
23424 (pressFit-X]
3, (rectConstraint+Z, rectConstraint+Y, rectConstraint-Y, rectConstraint+X, rectConstraint-X)
E onstraint-¥, rectConstraint+X, rectConstraint-X)
rightPlasticHousing
IeFtPlastighgs

nstraint+X, rectConstraint-X, rectConstraint+Y, rectConstraint-Y, rectConstraint+Z)
onstraint+Y, rectConstraint-Y, rectConstraint-Z)

:gi

ScrewS {screvi)

Figure 7. A simplified model of the Toro Model #51586 leaf blower with the motor modeled as a single
component.

A comparison of the Pareto sets resulting from the simulations for the two similar products is shown in
Figure 8. This graphical depiction allows a direct comparison of the environmental impacts of these
similar products. On the plot, the goal is to minimize wasted weight while simultaneously minimizing
disassembly time. This means the utopian point is in the lower left corner of the plot.

1.2

0.8 —\
0.6

\ —i—Troy-Bilt TB190BV

Wasted Weight

0.4

\ =—4—Toro Model #51586

0.2

0 L

0 5 10 15 20 25 30

Disassembly Time {sec)
Figure 8. Pareto sets for two leaf blower models.
In addition to the Pareto sets shown in Figure 8 the simulation also outputs the disassembly sequences
for each of the points indicated. Direct comparisons can be made between similar products which

would suggest that the Toro model is more fit for recycling than the Troy-Bilt model since it takes less
time to completely disassemble it.

ICED'09 7-225

7 FUTURE WORK & POTENTIAL RECOMMENDATIOS

Future work will involve decreasing the computational time of the tree search and evaluation process.
Originally a depth-first search was used, followed by best-first and currently IDA*. The evaluation of
nodes in the disassembly tree is a very quick process at the moment therefore work in this area will
focus on decreasing the branching factor of the disassembly tree by grouping identical operations —
such as removing multiple, identical screws — into a single operation.

More work will also go into analyzing the information conveyed by the Pareto sets. By observing the
shapes of the Pareto curves it can be determined which components within a product’s assembly have
a large impact on the wasted weight to disassembly time relationship. Suggestions such as changing
the material type or the method of connection to other components would therefore have an effect on
the overall environmental impact of the product. These suggestions could be taken into account in the
design phase of product which would increase the usefulness of the evaluation technique presented
here.

ACKNOWLEDGMENTS
The authors would like to thank the National Science Foundation for supporting this work under grant
award number DMI-044880.

REFERENCES

[1] Gutowski, T., Dahmus, J., Albino, D. and Branham, M. Bayesian, Material Separation Model
with Applications to Recycling, in IEEFE International Symposium on Electronics and the
Environment, Orlando, May 2007.

[2] Extended Producer Responsibility Laws as of May 2009,
http://www.productstewardship.us/displaycommon.cfm?an=1&subarticlenbr=280

[3] Gross, D. and David, E., The Tao of Junk, Newsweek Web Exclusive, 5 September 2007,
www.newsweek.com/id/39771

[4] GraphSynth web site, http://www.me.utexas.edu/~adl/graphsynth/

[5] Boothroyd, G. and Dewhurst, P., Product Design for Assembly, 1989 (Wakefield: Boothroyd
Dewhurst, Inc.)

[6] Boothroyd, G., Dewhurst, P. and Knight, W., Product Design for Manufacture and Assembly,
2002 (New York: Marcel Dekker)

[7] Homem de Mello, L. S. and Sanderson, A. C., AND/OR Graph Representation of Assembly
Plans, in /[EEE Transactions on Robotics and Automation, Vol. 6, No. 2, April 1990.

[8] Kork, R. E., Depth-First Iterative-Deepening: An Optimal Admissible Tree Search, in Artificial
Intelligence, No. 27, 1985.

Contact Author: Matthew |. Campbell
The University of Texas at Austin
Department of Mechanical Engineering
1 University Station, C2200

Austin, TX 78712-0292

United States of America

Tel: 512-232-9122

Fax: 512-471-6356

E-mail: mc1@mail.utexas.edu

URL: www.me.utexas.edu/~campbell

7-226 ICED'09

APPENDIX A: TORO MODEL #51586

.mrlma phSynth - [DefaultSeed: leaf_blower.gxmi]

ol File Edit View Design Help

Z

plasticRoterSupport

..___-.J

246 (module)

e -
7423 { pressFit-X) / Stz
{rectCamgtraint+<
22220 (rectConstraint-Z, rackSoRshca /ﬂ/m/nnu Bint-Y,
<3
22421 (rectCon: ‘l’w. I <o rixt
b SRS
b orgtra =cis

ectConstraint+X, rectCgométraint

ot Aot s FEALRISEEIREYY, radconstrainty)

raint-X, rectCs aint+2Z, rectConstraint-Z)

WAgeFY 30020 (rectConstraint+Y)

7-227

ICED'09

APPENDIX B: TROY-BILT TB190BV

[#+ GraphSynth - [leat_blower_troy-bilt_TB190BV.gxmi]

aZ! File Edit View Design Help - 8 X
s
vgcusmDaor
=priRg —
[Not_set]82 [dfessFit-3)
onOffSuitch
[t _set] p dflset]26 (pressFit+Z)
leftrlast)ci Z, rectConstraint+X, rectConstraint-X, rectConstraint+Y, rectConstraint-Y}
e = , rectConstraint-X, rectConstraint+Y, rectConstraint-Y)
[Not_set’s
raintz) [Not=setl2525 (rectConstraint+Z, rectC
afntz)
plasticCa)
[Togh_set] 28 {pressFit+x
imp
& m&mﬂba‘ rectConstra
e 5=t 5
ot } EpEtTIIER F Toat_set?6 TpopAEERE) 7 51104 (5 b thgokatorPlastic
¥ . Fat] ctberDudeg s L i i ﬁ"nanﬁuﬂﬂm%.x,
T | T § oh/ssal el ffot_set]6s (winding)
oSBT ST (pd Soinpdntinktia i C reatr R Fatl G . Mot _set]70 [winding)
at"%et]32 (aphestta)] sekr HoE-44piasd tadlfConst eciCo i \ (rectConstraint+Y, rect!
o — LMot _set] pressFit+ 2 " 6 (reConhs 3
topBk; N 3 Y i
abtEpTmr—— e
[Mot_s=t]24 (pressFikes
. B . [Not s
e [Not_set]52 (rectConstraint+X, |ragConstraintX}
bearingWasher fot_set]48 {pressFit-X)
rightSpring

ICED'09

7-228

