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ABSTRACT
This paper discusses the question how to increase the amount of design automation software in 
industry. First, the contemporary industrial context is outlined to motivate the need for automation of 
parametric routine design problems. Second, the knowledge engineering (KE) activity is identified as 
a bottleneck that prevents large scale deployment of design automation software. Knowledge 
engineering is seen as the process to construct a mathematical model of a design problem. Literature 
and our own research results are used to illustrate that the KE activity for new problem automation is 
often unpredictable in terms of the activities to execute and time it will take. A correlation seems to be 
missing between the problem size and the required knowledge engineering effort. Possibly, this is a 
result from the diversity of design problems and the tacit nature of expert knowledge. A route toward 
more prescribed KE is suggested by tightly integrating theories from cognitive design, knowledge 
engineering and constraint satisfaction. The goal is to closely relate knowledge acquisition 
(interviewing of experts) with the knowledge modeling activity and automation algorithm.
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1 INTRODUCTION 
In everyday life, consumers that want to buy a consumer product are supplied with online shops and 
comparison sites that support the decision making process. Software tools make shopping faster, easier 
and provide more overview of alternatives. 
For engineers, a product creation process often involves a number of routine decision making 
processes that still consume considerable time. The available aids for routine parametric problems are 
handbooks, formulas, catalogues and/or Excel-sheets with experience knowledge. Finding the right 
design takes time and as a result, only a handful of alternatives are considered. The commercially 
available support tools for decision making for engineering shows a discrepancy with the support for 
consumers, even for the parametric routine type of problems. 
This paper aims to identify the bottleneck that prevents large scale deployment of decision making 
tools for engineering, and suggest an approach to relieve the bottleneck. The scope is routine 
engineering design with parametric information and quantitative information. This covers continuous 
and discontinuous parameters, as well as a mix of linear and non-linear equations, logic and fuzzy 
estimations, for static and dynamic topologies. The scope includes the design of machine elements, 
product components and product systems.
The goal of this paper is to motivate the need for a prescriptive knowledge engineering method, and is 
part of the Smart Synthesis Tools project [1], [2]. The prototypes that are used to illustrate the KE 
process as bottleneck are explicitly documented design problems from handbooks. Design problems in 
industry are quite different in the sense that industrial problems have more tacit knowledge and the 
models are not explicitly known. The handbook-prototypes are used because there still is a KE activity 
to translate the pages of text into a model that can be automated by an algorithm. 

1.1 Paper layout
Software that automates design processes and generates multiple design candidates is well-known. 
Section 2 briefly discusses the contemporary industrial context to motivate that design automation 
software is very suitable to be deployed on a large scale. 
Section 3 reviews the commercially available support for engineering design and identifies that only 
little software with automatic candidate generation is found. Still, automating routine design tasks will 
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save time, improve quality, increase insight and allows designers to quickly scan possibilities. The 
algorithmic state-of-art is beyond what is needed to automate routine design for parametric problems. 
Section 4 illustrates an emerging bottleneck: the process of constructing a mathematical model of the 
problem, based on the knowledge of expert designers. This process requires information from the 
knowledge source to be translated into a format that can be automated. Challenges are the interviewing 
of experts, or analyzing textbooks, and deciding upon the system boundaries, quantity and content of 
the knowledge rules and ensuring a maintainable knowledge base. 
Section 5 discusses in more detail the field of developing knowledge models: the domain of 
knowledge engineering. 
Section 6 suggests an approach to relieve the bottleneck, by integrating the views of the knowledge 
with models and algorithms of automation. This requires integration of theories from cognitive design, 
constraint satisfaction and knowledge engineering. The goal is to form a method that offers a
continuous development procedure from knowledge source to software system. A prescriptive aid 
should be provided to prevent the necessity for a knowledge engineer to first possess all required 
knowledge and then translate this into a mathematical model plus implementation.

2 INDUSTRIAL CONTEXT 
We encounter in the world around us an enormous stream of products with constantly changing 
features and appearances. It seems that a product is (re)designed for nearly every taste, price range and 
user group. The trend of increasing product diversity has a profound impact on companies, teams and 
individuals that develop these products [3].
The force that drives the growing supply of consumer products can be traced back to the developing 
countries. These countries rapidly improve their socioeconomic standard, bringing with it a vast 
consumer base of hundreds of millions of people. These people gain access to modern products and 
services which make these markets a tremendous potential for firms to increase revenue. 
Many companies change their models of commerce, marketing strategies and product palette in order 
to take full advantage of the emerging markets [3]. The new type of consumer demands products with 
low prices but modern performance, tailored to their local taste. One of the answers of multinational 
companies is to use existing technologies to develop high quality products in great variety [4]. The 
speed of new product development becomes increasingly important. 
The fast development of consumer markets increases the pressure on the engineering design process to 
reduce time to market [5], [6], [7]. Uncertainties and risks are reduced where possible [8] and 
information and communication technology is adopted to enhance flexibility, speed and efficiency of 
the process [9], [10].

3 SOFTWARE SUPPORT FOR ENGINEERING DESIGN  
A review of the commercially available software reveals that the majority focuses on the design 
process steps of analysis, drawing and refining details of established design concepts. Only little 
software support addresses the creation process of designs. The majority of software requires a fully 
defined design as input, which forces the engineer to plan ahead and make choices. After a weak point 
is identified by analysis, this can be corrected in a number of ways. Only little methodology is 
provided for guidance about what to do next [11], [12] and [13].
Ullman [11] describes an ideal support system for the creation of new products: insight is provided in 
the relationship between the customer wishes and the available product options. The search for the 
best design is an automated process, guided by the preferences of the engineer. Support systems 
present alternative solutions that give an overview of what is possible. This allows experts to use their 
experience and “design intent” to select the solution that is better than all others. 

3.1 Generating designs
Different software functionalities have been developed to support the engineering design. This paper 
focuses on software that generates multiple design solutions for a set of requirements, a type of 
software of which a large body of research results are available. Designers specify the required 
behavior and the software generates possible designs that meet the requirements. 
Computational Synthesis (CS) is a field of research that generates and optimizes designs with 
topological variety. 
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A research overview of CS is given by Antonsson and Cagan [14]. CS offers support for design 
processes ranging from shape driven (architectural) design to electro-mechanical systems. The concept 
of grammars offers a formalization of design synthesis knowledge. The result is a form of production 
rules, or graph based pattern recognitions, that expand an initial graph into an eventual design. It 
supports geometric representations, reasoning and emergent shape properties [15]. Generating 
solutions on both the topological and parametric level can be done using so-called parallel grammars, 
e.g. for gear design [16].
An example of constraint-based approaches is described for the field of 3D mechanism and linkage 
system design in [17]. The model of the problem is stated as equalities and inequalities, and multiple 
sets of values that represent (possible) solutions are presented to the user. Seeing and judging multiple 
design candidates increase the understanding of the design problem [17]. A constraint-based model 
describes the problem and direct search optimization is implemented to generate solutions. 

3.2 Parametric design
An example of software that generates multiple designs for parametric problems is given in Figure 1.
The figure shows the theoretical model and the software tool developed. The models and relations 
from commonly engineering handbooks are implemented. The tool shows the behavior information 
that is taken into account and allows the user to specify known parameters, such as the mass of the 
object or input motion.

Figure 1: parametric engineering design

The software is used to design a car suspension system. The design goal is to comfortably absorb a 
bump in the road: the car should go up and down only slightly and quickly stop bouncing. Consider 
the situation of a car driving up a curb of say 10cm, at a speed of 5km/h. 
The designer has to find the right specifications for the suspension system, consisting of a spring and 
damper in parallel arrangement. The software generates and analyzes multiple designs, visually 
presenting the solutions in a solution space. The solution spaces provide quantitative information 
about the possible behaviors of designs. The behaviors of interest are in this case the height and the 
duration of the bouncing motion. The software allows the designer to see what is possible, and select 
the solution(s) he/she prefers.

8-3



8-4 ICED'09ICED’09/111

Figure 2, left hand side, depicts the quantitative behavior specifications of about 200 designs: the 
overshoot on the y-axis and the settling time on the x-axis. Each dot represents a quantified design. 
The favorable designs are located in the bottom-left corner (the red group). Figure 2, right hand side,
shows a plot of the two main design variables: damping coefficient and spring coefficient. In this plot, 
the same group of best designs is located at the upper section of the solution cloud (the red group). 
Observing these two plots, the designer sees what springs and dampers will result in a comfortable 
ride. 

Figure 2: design automation, solution spaces

The insight on the design possibilities is difficult to obtain from theoretical analysis and trial-and-error 
iterations by hand. The software quickly provides an overview of possibilities, which saves time and
steers toward an optimal design because the designer is aware of the alternatives and picks the design 
that suits him best.
For the example in Figures 1 and 2, the technology has been available for decades. However, such 
software will not be mass-produced until the development cost lay under a certain limit. For the 
spring-damper example, the mathematical models of the problem should be acquired from the source 
in hours. For industrial problems with human experts, the knowledge acquisition and modeling 
activity should be done also in an efficient, methodological manner. 
A methodological approach to acquire models for a diverse range of engineering design has to deal 
with several different types of knowledge, elaborated further in the following section. 

3.3 Design knowledge
The scope of parametric routine design ranges from theoretical problems, machine components to 
products. The modeling entities and constraints to satisfy are encountered in a variety of ways. 
Generating designs is generally an under constrained problem: there are more unknown parameters 
than there are equations. Actually, having equations is already a luxury. Studying design cases from 
engineering handbooks and industrial settings shows a mix of linear and non-linear algebraic 
equations, logic reasoning and random estimations with exceptions or uncertainties. These relations 
can come from scientific formulas or fuzzy experience knowledge. Choices made earlier can influence 
what rules to apply later on. Designs with topological freedom can include or exclude entire groups of 
variables and relations. 
The parameters that describe a design are a mix of continuous and discontinuous, Booleans and set-
based parameters. For example, the parameter “material” is composed of a Young's module, density 
and melting temperature. One cannot use an equation to determine a value for the Young's module: 
such a material is not guaranteed to exist. 
Another challenge with automatic generation of designs is the unpredictable input information. The 
user might, or might not, prescribes the value of certain parameters. And this can change each time the 
software is used. The algorithm could encounter systems of equations, or worse: a system of relations 
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with all the mixed types described earlier. And in advance one does not know if a solution exists or 
not. In any case, the algorithm that generates designs has to complete the rest of the design 
automatically and find solutions, if they exist.
Developing a software module that processes the user input and generates designs accordingly can be 
done in an ad hoc manner: study the design case and decide how to implement the model and 
algorithm. The following section uses six prototypes to discuss the ad hoc approach. 

4 DEVELOPMENT PROCESS 
Illustrating the development of design automation software is done with several prototypes that were 
developed before 2005 [18] (several years before the tool of Figure 2). Please note, the scientific rigor 
of said prototypes is insufficient to draw any firm conclusions. I aim to demonstrate the unpredictable 
amount of effort that is required to model and automate apparently similar design problems. 
Comparing the problem complexity and the development effort is difficult: the design problems and 
implemented algorithms are different, as well as the skill and experience of the software developer. 
The development time is estimated for the software module that generates solutions, including 
knowledge acquisition, modeling, algorithm design, implementation and testing. The complexity of 
the generation module is measured by the number of parameters that a user can optionally specify as 
input: the degrees of freedom. The algorithm has to cope with changing input specifications and 
generate solutions that satisfy this input. 
The required data points are hard to measure and scientific conclusions can only be drawn from a 
sufficient number of data points, obtained through controlled and repeatable experiments. For the data 
points I assume an error margin of 20 to 30%.
The functionality of six prototypes is given, as well as the development time of the generation module 
(not the complete application). After that, the development time is plotted against the number of 
degrees of freedom to illustrate the apparent lack of correlation. 

4.1 Prototypes
One of the first prototypes is developed for compression spring design, with the graphical user 
interface as depicted in Figure 3. The interface shows the spring in three positions: relaxed, in first 
compression and second compression mode. Several input fields are visible where the user can 
optionally specify several geometric requirements and spring characteristics, in this case values for F1, 
F2, L2 and a maximum value for the external diameter. The algorithm generates a list of fully defined 
springs that meet the specifications, in this case a total number of 282 springs. Each solution is 
parametrically fully defined in terms of material, geometry and usage situation. Knowledge is used 
from an engineering handbook [19] and DIN standards. Development of the code that performs 
candidate generation took 12-16 weeks.
Prototypes with similar functionality as the compression spring designer are developed for spindle-
drives, three types of springs and fiber-reinforced composites. The functionality of these prototypes is 
discussed briefly. 
The spindle-drive designer enables the user to specify a desired motion and dynamic behavior of a 
manipulator that is positioned using a spindle-drive, powered by an electro motor and gear 
transmission. The software generates several combinations of electro motor, transmission and spindle. 
The algorithm takes into account the domains of dynamics, electronics and control systems and took 
approximately 14-18 weeks to develop. 
Three spring designers are developed after the first version of Figure 3, for compression, extension 
and torsion springs. The development effort of the three systems was reducing due to the learning 
effect and re-use of code: approximately 10-14 weeks, 4-6 weeks and 3-5 weeks respectively. 
The last prototype is the composite designer, which supports the design of fiber-reinforced 
composites. The user can specify which materials are allowed and information about the orientation 
and stacking of the plies. Different generation and optimization algorithms were implemented but the 
first algorithm (full search) took approximately 2 weeks. 
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Figure 3: compression spring designer

4.2 Comparison
The relation between the development time and number of degrees of freedom is given in Figure 4.
The figure illustrates the unpredictable nature of the development of the generation module: no 
apparent correlation exists between the development time and the complexity of the problem. 
Secondly, a development time of several months only for the design generation module of a
mechanical spring seems out of proportion.

Figure 4: development time versus algorithm complexity
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The scope of this paper is routine design problems that can be described parametrically. This means 
that the knowledge to solve the problem is available, tacitly, explicitly or a combination of both. The 
algorithms to automate such a problem are available. For instance the Role-Limiting Method [20] that 
expands, checks and repairs a partial solution. A similar algorithm from Constraint Satisfaction is 
backtracking [21], but a wider range or algorithms exist also from Constraint Solving and optimization 
research. The principle of having a generic algorithm that operates on a knowledge base is applicable 
for such algorithms and can be used to automate the intended scope, and one possibility is presented in 
[22].
Once a generic algorithm is prepared, the main difficulty to develop tools lies in the diversity of the 
design problems and the modeling of the knowledge. A systematic development method for design 
automation software should be indifferent to these aspects for its entire applicability scope. This is the 
domain of knowledge engineering. The following section discusses the domain of knowledge 
engineering to see if a readymade solution is available. 

5 KNOWLEDGE ENGINEERING 
Knowledge engineering (KE) is the process to design or develop a computational model of 
knowledge. KE involves activities of knowledge acquisition and representation [23], [24], both 
processes that have some distinct challenges. 
Knowledge acquisition is the step during KE where design knowledge is made explicit. Schilstra [25]
gives an overview of the development process of Expert Systems, and identifies several bottlenecks 
still persisting. These also include the tacit nature of expert knowledge, the challenges of knowledge 
extraction and the difficulty in modeling or representing the rules. In short, the well-known knowledge 
acquisition bottleneck [23].
Fensel [26] describes one of these difficulties by observing that design experts are experts in problem 
solving, not in explaining their solutions. The knowledge engineer therefore has to obtain thorough 
understanding of the problem at hand. Indeed, the book entitled “Fundamentals of Computer Aided-
Engineering”, by Raphael and Smith, states that the most successful engineering knowledge systems 
have been created for situations where the engineer-developers were also well acquainted with the 
subject [27].
In general, KE is seen as an activity that requires understanding of both the computational aspects as 
well as the design case at hand. The knowledge engineer has choices to make during the representation 
of knowledge into rules. For the design of shape grammars, for instance, the ideal grammar should be 
comprehensive yet model only feasible designs [14]. This involves choices regarding the amount of 
rules: many relatively simple ones, or a single complex rule? And the level of parameterization of the 
problem: many parameters for good expressiveness, or fewer to for better computational performance. 
And how to describe the dependencies that occur between the rules? 
The KE activity is usually done by people who possess the knowledge. This trend is seen in other 
research projects as well. The Knowledge Acquisition and Representation Language (KARL [26]) is 
aimed at knowledge acquisition from the knowledge engineer into a formal language. The MOKA 
project addresses the issues how to standardize and model design knowledge consistently, once it is 
gathered [28]. 
Studer et al. [20] reviews the principles and methods of knowledge engineering research. The 
paradigm shift from “direct transfer” of expert knowledge toward a “modeling activity” is discussed. 
The modeling activity of expert knowledge includes the process of acquiring tacit knowledge and
make this explicit. When re-usable problem solving methods are used, the process of knowledge 
modeling is prescribed using the generic roles that knowledge can play. This “shell” approach is 
suggested and used for parametric design tasks. However, the inflexibility of the problem solving 
method and the connection to the real-life situations are said to remain a challenge. 
The “classic” knowledge engineering is depicted in Figure 5, consisting of a knowledge source, a 
model and an algorithm. Model and algorithm are closely related because the algorithm more or less 
dictates the modeling expressiveness. A human interpretation of the knowledge source is required 
before it is modeled. This increases flexibility of algorithms and problem modeling, but also requires 
acquisition and understanding of the expert knowledge as well as understanding of the algorithmic 
possibilities and limitations. 
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Figure 5: knowledge engineering

This paper suggests a closer integration between knowledge source and model, so that less human 
interpretation is required: a more prescribed translation of expert knowledge into modeling entities
that are automated by a generic algorithm. A more prescriptive knowledge engineering activity is 
expected to reduce modeling effort at the cost of the applicability scope. 

6 DEVELOPMENT METHOD 
Figure 6 indicates the domains that are involved during development of design automation software. 
The continuous path through the domains, from left to right, indicates the development process.
The development process begins with a knowledge source, a design expert. The design processes 
where this expert is involved are first decomposed to gain overview and see where the software can be 
build. After selection of a suitable design process, the relevant knowledge is acquired and made 
explicit. Next, the knowledge is modeled into a format that is subsequently automated by an algorithm. 
When developing several software tools, the concept of generic software development is used to 
reduce the required effort. Finally, the user interaction is determined to offer the best interaction for 
the end-user.

Figure 6. knowledge domains and the development process

The intended method translates a knowledge source into a model that can be automated by a known 
algorithm. The algorithm should be a generic one and applicable to an interestingly wide scope. The 
models of knowledge are defined in a standardized manner, and are automated without the need to 
modify the algorithm [22]. Prescriptive knowledge modeling requires standardization of the 
knowledge entities, but also consistency between the activities from knowledge source to knowledge 
model: do not acquire something the algorithm cannot automate. 
A development method prescribes the KE activities from design process decomposition, knowledge 
acquisition, modeling and implementation. The goal is not only to make this process more predictable, 
but also for non-KE experts to be able to execute it. The method addresses three major questions: 
1. what is relevant; what are the modeling boundaries;
2. how to acquire the computational model of the problem and the generative knowledge 

(knowledge acquisition);
3. how to automate the computational model: a generative algorithm.

The above mentioned questions should be answered simultaneously, rather than sequentially. The 
answers are found without the knowledge engineer becoming a design expert him/herself. The source 
of the knowledge states the required information during knowledge acquisition. Ideally, the answers of 
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the expert are implemented directly, without any intermediate translation or modeling by the 
knowledge engineer. 
Some underlying principle is required to guarantee consistency between the algorithm and tacit expert 
knowledge. In our view, a human-like mechanism of design is best used as basis to derive the 
proposed method. Visser [29] discusses design from a cognitive point of view and describes the 
activity of design as an evolvement of representations until a complete design is created. The 
generation mechanism, or algorithm, can be an uninformed search. A relatively simple backtracking 
algorithm from constraint satisfaction can be used as baseline algorithm.
If a cognitive model is used as leading concept, the tacit knowledge resides in the mind of experts in a 
similar way as the automation algorithm will automate it. This reduces the need for intermediate 
knowledge engineering because the knowledge can go almost directly into the software. 

7 CONCLUSION 
Automation software for routine, parametric problems fit the context of today's and tomorrow's 
engineering design processes. Several domains play a role during the development of design 
automation software and each one individually seems mature enough to address a wide range of 
engineering design problems. Improvement of the development process is suggested by using a 
human-like knowledge model to reduce the modeling effort of expert knowledge. Subsequent 
automation can be done with an existing algorithm that is made generic for a scope of design 
problems. Consistency between the algorithmic capabilities and knowledge acquisition phase is 
maintained by using a human-like model of knowledge as underlying base. 
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