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ABSTRACT 
Since real product use information is not available, Design Simulation and Design for X methods in 
many ways rely on assumptions regarding the product use today. These assumptions generally differ 
from the real conditions of product use. There are various reasons for not feeding back product use 
information. First, current business models lead to a loss of access to the product after sale. Second, 
due to their price and size appropriate sensors are only rarely embedded in the product. Third, there is 
a lack of an integrated framework for feeding back product use information into product development. 
This paper presents a new solution approach for the integration of product use information into 
product development. The first part of the paper provides a summary of the developed solution. While 
aspects like data management and knowledge discovery have been covered in previous work, this 
paper focuses on the representation of empirical product use information and the use of knowledge
based inference methods in order to carry out “WhatIf analyses. These can help the product 
developer to improve the design of next generation products. 

Keywords: Product Use Information (PUI), Product Lifecycle Management (PLM), Knowledge 
Representation, Artificial Intelligence 

 
Design Simulation and Design for X methods and tools support the anticipation of product behavior 
during its use [1,2]. Unfortunately, the real conditions of the product use and environmental use 
conditions differ from the design assumptions. Today, the acquisition, aggregation and analysis of 
product field data for design purposes are fairly difficult due to different reasons. 
First, within the current producercustomer business models the product suppliers do not have any 
access to the customer’s product environment. Second, sensors embedded within products for 
monitoring product use parameters like loads and environmental data are rarely used due to their high 
price and large size. Third, an integrated conceptual framework for filtering, aggregating and 
analyzing field data for design feedback as well as appropriate IT infrastructures are not available. 
The emerging shift within manufacturing companies from selling products to offering customer
specific product service systems (IPS²) will expand the responsibility of producers to the whole 
product lifecycle [3] and will facilitate an easier access to product use information. Furthermore, the 
progress in the miniaturization of embedded micro sensors, their price reduction as well as advances in 
the information technology will allow an easier capturing and processing of product use information as 
feedback for the development of improved products. 
In this changed industrial and technological environment the project described in this paper aims at the 
development of a new solution for the acquisition, aggregation and analysis of product use 
information. This solution is based upon knowledgebased methods like Bayesian network inference 
and is integrated in an extended Product Lifecycle Management (PLM [4]) solution. Within the scope 
of a feedback cycle, product use information and deduced knowledge from previous product 
generations can be incorporated into the development of subsequent product generations in a target
oriented fashion and can thus provide faster product improvements, lower development costs, 
increased product quality and lower maintenance expenses for the use phase. The IT prototype of the 
proposed approach has been realized as an extension of the commercial PLM software Teamcenter 
Engineering (by Siemens PLM software) and validated by a use case of a rotary spindle used in a wire 
electrical discharge grinding (WEDG) machine. 
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 


Figure 1 provides an overview of the developed overall solution for the feedback of product use 
information into product development. The upper half of the figure shows the situation during the 
product use phase for various customers. Every customer uses another instance of the product i within 
individual environmental conditions and load scenarios (1). Many customers maintain data bases with 
product use information for condition monitoring purposes, which include sensor data, environmental 
parameters, failures and incidences of maintenance, locally and isolated from each other (2).  
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

So far, if not totally neglected, product use information has been used for process optimization or for 
the prognosis of incidences of breakdown or failure. The approach described in this paper intends that 
the product use information is led back to the product development in the course of a feedback cycle. 
This serves as a basis for deducing room for improvement and optimization for new product 
generations. 
For this, the data generated at various customer locations first has to flow back to the manufacturer 
(lower half of the figure). The knowledge engineer edits the raw product use information with the help 
of knowledge discovery methods (3), deduces interrelationships between sensor data, environmental 
parameters, breakdowns and incidences of maintenance both qualitatively and quantitatively, and 
finally manages the resulting individual diagnosis models (4) in the PLM data archive. In this context, 
the metadata model forming the core of an PLM system (5) has been extended to manage not only 
traditional product type but also product item data. (This aspect is taken up in a further paper by the 
authors. It describes in detail the extension of a commercial PLM system for an integrated 
management of product item and product type data [5].) 
y using knowledgebased methods within a PLM system it is possible to aggregate knowledge (6) 
from the data collected and edited with the help of knowledge discovery methods. The knowledge 
engineer can enter the product use information acquired from various customers in the PLM data 
model, generate individual diagnosis models and finally aggregate them. Thereby he can deduce a 
representative diagnosis model which takes differing environmental and load scenarios and their 
impacts on the machine condition, generally varying for individual customers, into consideration. The 
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mentioned aspects of learning and aggregating individual diagnosis models based on machine learning 
and fusion algorithms were discussed on a technical level in [6] and will not be repeated in this paper. 
On the basis of inference methods the product developer in collaboration with the knowledge engineer 
can interactively apply the aggregated diagnosis models in order to carry out simulations and What
If” analyses (7). For instance, definite load scenarios and environmental parameters can be set and 
depending on this probabilities for certain machine conditions, instances of breakdowns and 
recommended maintenance intervals can be calculated. All these simulations are based on data 
empirically gained during the product use phase. Such analyses form the basis for product developers 
for identifying critical components and deduce room for improvement of new product generations. 
The topic of representing product use information and deducing knowledge on the basis of knowledge
based methods is central to the following chapters. 
The solution outlined in this section can be understood as an assistant for product developers. 
Deducing and realizing room for product improvement constitutes a creative process which cannot be 
automated with today’s technologies. The aggregated diagnosis models along with analyzing 
techniques based on artificial intelligence methods should therefore rather support product developers 
in carrying out this creative process efficiently.  

 

3.1 Requirements for the knowledge representation 
The term product use information has already been distinguished from the purely subjective customer 
feedback in the introduction of this paper. Thus, no suggestions for improvement or positive/ negative 
reviews from customers as well as demands on future product generations expressed by users should 
be acquired and represented (These topics are already addressed in [7]). The focus of the represented 
data from the product use phase, which is to be considered within the scope of the present paper, is 
rather on objectively measurable information which accumulates during the use of a product.  
This data strongly depends on the product examined. However, by concentrating on complex 
production machines and their components recurrent classes of data could be found. A structuring of 
the product use information to be represented into the following classes was conducted on the basis of 
the analysis of several case studies (stepper for the use of wafers in chip production, Wire Electrical 
Discharge Grinding (WEDG) machines for the electrical discharge machining of work pieces and 
other production machines).  
 
 Sensor data of the machine: the machine parameters captured in the course of a condition 

monitoring are part of this class. Examples are engine speed, consumption of operating materials, 
machine running times, voltages etc. 

 Environmental parameters: All objectively measurable ambient factors which have an 
influence on the operation of the examined machine fall into this category. Depending on the 
machine this can be, for instance, temperature, pressure, humidity of the ambient air. 

 Quality parameters of produced items: complementary to the already discussed sensor data of 
the examined machine monitored quality parameters of manufactured items can (also via sensors) 
provide information about the condition of the machine. A concrete example is the proportion of 
functioning chips on a wafer (yield).  

 Failures/ breakdowns: failures of components and other reduction of functioning are subsumed 
under this class. 

 Incidences of maintenance: maintenances and repair measures as well as the exchange of 
components are part of this group.  

 
Knowledge representation and reasoning techniques are part of the field of artificial intelligence which 
is concerned with how knowledge can be represented symbolically and manipulated in an automated 
way through reasoning. The knowledge engineer dealing with the problem context at hand has to 
represent this knowledge in a formalized way based on an acquisition process for the acquisition and 
structuring of explicit and implicit knowledge from the product use phase. In which form can the 
gained sensor data, environmental parameters, breakdown data and incidences of maintenance be 
represented in order to use them in the processing stage for deducing coherences? Which demands 
have to be satisfied by the methodology for knowledge representation? 
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Hereafter, requirement potentials are discussed which are made on the representation and the 
management of product use information in order to be able to deduce knowledgebased improvement 
potentials from individual product entities and more general on the product type level. 
 Automatic transformation of PUI in PUK: In order to conclude improvement potentials from a 

knowledgebased feedback into the product development it is insufficient to provide product 
developers with the raw product use information (PUI) gained in the product use phase (e.g. 
condition monitoring data of a WEDG machine). Rather, these have to be edited intelligently and 
the product use knowledge (PUK) existing implicitly in the data has to be extracted. Therefore, 
one of the most important requirements on the methodology for knowledge representation is to 
enable deducing PUK as completely automated as possible from case data gained empirically 
during product use.  

 Integration of expert knowledge: The integration of a priori knowledge enables an integration of 
basic conditions or known dependencies in the preliminary stages of the model. For instance, by 
this, qualitative dependencies of load scenarios, environmental parameters or component 
breakdowns can be incorporated into the model as given expert knowledge.  

 Representation of uncertain knowledge: The representation of uncertain knowledge (as the 
result of incomplete, imprecise, inconsistent and defective data) and the handling of this type of 
knowledge is another important requirement especially with regard to the application domain 
‘product use information’ since sensor data may be imprecise or missing and the interrelationships 
between sensor data, failures and incidences of maintenance contain a large degree of uncertainty, 
particularly in the case of new technologies.  

 Aggregation of PUK: Mechanisms of aggregation and fusion are necessary for the consolidation 
of individual models in order to ensure a higher representativeness and relevance of the resulting 
knowledge representation model.  

 uitability for inference hatIf Analysis: The support of intelligent inference techniques is 
especially decisive with regard to the application of the methodology for knowledge 
representation so that simulations and analyses (Which influence do certain environmental and 
load scenarios have on a particular component failure?) can be conducted on this basis.  

 Intuitive graphical visualization: Intuitive graphic means for the visualization of the derived 
product use knowledge are necessary in order to support product developers. 

 Model interpretability: The interpretability of the model and the conclusions assessed on the 
basis of inference techniques constitute a mental factor which should not be underestimated. 

3.2 State of the art of methods and techniques for knowledge representation 
In the further course of this chapter models for knowledge representation are compactly presented and 
compared with each other. The models are structurally subdivided into various categories and the most 
important models of each category are presented. Afterwards, the most relevant approaches for the 
structured representation of product use knowledge are evaluated. In this context, it is advisable to 
give a definition of knowledge representation before the individual knowledge representation models 
are introduced.  
Knowledge representation is to be defined as a set of syntactic and semantic conventions for 
describing things and circumstances. The syntax specifies a set of rules which can be used for 
combining and grouping the symbols on which the knowledge handling is based. Thereby, expressions 
of the representation language can be formulated. The semantic describes the meaning of these 
expressions [8].  
A way of structuring the most established knowledge representation forms is shown in Figure 2. In 
principle, it can be distinguished between procedural and nonprocedural knowledge representation 
forms. Procedural knowledge representation forms are characterized by focusing on the description of 
procedures [9], while nonprocedural knowledge representation forms rather concentrate on the 
individual knowledge elements and the relations between these elements [10]. 
A disadvantage of procedural knowledge representation forms often cited is the mixing of application
specific knowledge and general problem solution knowledge. As a consequence, the flexibility and the 
maintainability of such systems are strongly restricted, because a direct intervention in the program 
code becomes necessary with regard to an extension of the knowledge basis.  
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

Nonprocedural knowledge representation forms stand out due to a clear separation of general problem 
solution knowledge and applicationspecific knowledge. ulebased systems constitute a good 
example. The domainindependent inference mechanisms (algorithms for the deduction of new facts 
through conclusions) are contained in the problem solution component while the actual domain 
knowledge is kept segregated in a rule data base. This separation allows the explicit mapping of 
knowledge in a program logic. However, the resulting disadvantage is a higher initial effort for 
creating such systems. On the other hand, it leads to a considerably improved maintainability. By 
depositing the casespecific expert knowledge within a closed knowledge basis it becomes 
exchangeable, upgradeable and modifiable without having to change the program code.  
On the next granulation level nonprocedural knowledge representation forms can be subdivided into 
declarative and nondeclarative knowledge representation forms. An example for declarative 
knowledge representation forms has already been given above rulebased systems.  
Declarative knowledge representation forms like Bayesian networks are characterized by a 
presentation of facts and the relations among them in order to gain new knowledge on this basis [11]. 
With regard to the aspect of interpretability conclusions can be transparently understood by the user. 
This aspect is not given for nondeclarative approaches and should not be underestimated.  
Artificial neural networks are a typical example for a nondeclarative knowledge representation form. 
Artificial neural networks are capable of approximating functional coherences on the basis of case 
knowledge in form of training data sets [12]. Hereby, the interpretability by the user gets lost because 
it cannot explicitly be explained how neural networks arrive at certain conclusions. This can also 
complicate the acceptance of systems based on such representation forms.  
Procedural knowledge representation forms are inappropriate for modeling product use knowledge 
deduced from PUI because they concentrate rather on sequences than on the elements themselves and 
the relations between them. Therefore, the following evaluation focuses on rulebased systems 
(Bs), TreeBased odels (TBs), Artificial Neural Networks (ANNs) and Bayesian Networks 
(BNs) as the most relevant nonprocedural knowledge representation methods.  

3.3 Evaluation of methods for knowledge representation 
The knowledge representation forms most relevant for modeling product use knowledge with regard to 
the requirement criteria learning, integration of a priori knowledge, interpretability, inference, 
representation of uncertain and vague knowledge, visualization and aggregation techniques presented 
in 3.1 are compared and critically evaluated below (see table 1). The methodology which fulfills the 
criteria for the knowledgebased processing of feedback information from the product use phase in the 
most targetoriented way will subsequently be applied in a practical scenario.  


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
 

RuleBased
Systems

reeBased
Models

Artificial Neural
Networks

Bayesian
Networks

Automatic transformation
of PUI in PUK

Integration of expert 
knowledge

Representation of
uncertain knowledge

Aggregation of PUK 

Suitability for inference 
hatIf Analysis

Intuitive PUK graphical 
visualization

Model interpretability

 


 




 

◕◕◕◕ ● ○ ●
◑◑◑◑ ◕◕◕◕ ○ ◕◕◕◕

◑◑◑◑ ◔◔◔◔ ◕◕◕◕ ●
◑◑◑◑ ◑◑◑◑ ◑◑◑◑ ●
● ● ○ ●
◑◑◑◑ ◔◔◔◔ ● ●

● ◑◑◑◑ ● ●

Fulfillment of the requirements: ○not ◔only to a small proportion ◑partly ◕mostly ●completely

Representation
Requirements

 
With regard to automatic learning of knowledge on the basis of case data ANNs and BNs can play 
their advantages. Training data and appropriate learning algorithms (e.g. the backpropagation 
algorithm for ANNs [10]) enable learning general coherences from exemplary data sets as they occur 
in the field of product use information.  
The integration of a priori expert knowledge turns out to be difficult in case of an ANN as the entire 
knowledge has to be learned on the basis of case studies. Serious disadvantages also arise in terms of 
options for the interpretation and visualization of knowledge. ANNs are not suitable for explaining an 
output semantically as the (artificial) neurons of the inner layers of an ANN in themselves do not 
possess a semantic interpretation and, hence, the ANN has to be regarded as a black box.  
On the other hand, BNs offer the possibility to incorporate a priori expert knowledge into the model in 
addition to experimentally gained data. On a qualitative level dependencies between random variables 
can be modeled through manually integrated directed edges while on a quantitative level conditional 
probabilities can be determined by experts on the basis of theoretical insights, empirical studies and 
subjective estimates.  
Further advantages of Bayesian networks are the representation and processing possibilities of 
uncertain knowledge. In contrast to other examined knowledge representation forms it is not only 
possible to deduce the most probable diagnosis for a given set of symptoms, but also to determine the 
degree of uncertainty for the deduced conclusion. Furthermore, other possible diagnoses can be 
calculated according to descending probability. Inconsistencies, which for example occur for RBSs 
due to the local treatment of the factor uncertainty, can be avoided by a holistic examination.  
RBSs, KNNs as well as BNs offer the possibility of inference and hereupon based WhatIf analyses. 
The requirements on visualization possibilities for product use information, however, are best fulfilled 
by BNs because of their clearly arranged representation of qualitative coherences in terms of a 
directed graph.  
Especially relevant are possibilities for the aggregation of several knowledge representation models in 
order to be able to conclude general conclusions for the entire product class from the merged model. 
For the aggregation of Bayesian networks several concepts and algorithms are available [6]. 
Postulating that the same nodes in different networks also represent the same domains, an automated 
aggregation is made possible. Approaches for the individual weighting of several networks during the 
aggregation exist as well and contribute to the creation of a representative aggregated network. 
Concerning neural networks algorithms for aggregation exist as well (see e.g. [13]). Here, the same 
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structure is assumed for all networks to be combined. The aggregation of several TBMs proves to be 
difficult unless there is not exactly the same topology for all trees and only associated probabilities are 
to be aggregated. The aggregation of several rule bases turns out to be complex as it has to be tested in 
a holistic approach whether additional rules lead to inconsistencies. In case of similar rules it then has 
to be individually determined which rules should be incorporated into the aggregated rule basis.  
As measured by the requirements put forward in chapter 3.1 Bayesian networks overall appear as the 
most promising knowledge representation form for modeling product use knowledge especially with 
regard to aggregation, interpretation, inference and visualization capabilities.  

 

4.1 Use case scenario 
In engineering a vast number of manufacturing methods exists which are applied by several machine 
tools to handle a work piece. In general, parts are formed by archetyping, transforming, disconnecting, 
assembling, coating or changing certain material properties. 
The procedure of erosion belongs to the disconnecting procedures since, during the process of 
manufacturing, the cohesion of the work piece gets changed. Within the disconnecting procedures a 
further breakdown is carried out so that a certain type of cohesion modification is reflected. Thereby 
the spark erosion is assigned to the erosive procedures. Erosive procedures are characterized by not 
performing any mechanical action during the adaptation of the work piece. This enables a handling 
which takes place completely independently of any attributes of the work piece, for example without 
consideration of a work piece's hardness.  
The principle of spark erosion is based, as the name suggests, on sparks and their thermal impacts on a 
work piece. Particles are separated by the sparks and afterwards removed by mechanical and/or 
electromagnetic power. This process is also called Electrical Discharge Machining (EDM) [14]. 

Thereby the sparks emerge via electrical discharges between certain tools and the work piece and, 
furthermore, create a high temperature at the point of working. Besides the material removal on a work 
piece, additionally, there is a noticeable metal removal on the working tool. For cooling purposes and 
for the removal of segregated material there is a dielectric fluid. It is characterized by an especially 
poor conductibility and so isolates the electric wire and the work piece. 
 

rotary spindle WEDG
workspace

rotary spindle

drivemotor

drive belt

graphit brush

work piece

machine bed

wire

guide
pillar

 
Figure 3: Rotary spindle and schematic representation of the WEDG workspace 

 

ext, the general structure of a wireelectro discharge machine is presented. In these machines an 
implementing electrode in form of a wire is used, thus contactfree consigning its image on a work 
piece. Since the wire itself thereby incurs a certain material removal, it is continuously replenished by 
an engine in order to provide a constant material removal on the work piece. A generator supplies the 
working tool and the work piece with required voltage, so that a discharge and the associated 
appearance of erosive sparks become at all possible at the working point. The relative movement of 
wire guide and work piece is taken on by a separate control.  
EDM machines working with rotary spindles are commonly called Wire Electrical Discharge Grinding 
(WEDG). These machines are mostly used in the manufacturing of microstructured work pieces. 
Figure 3 illustrates the structure of a rotary spindle. The rotary spindle is assembled on the machine 
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bed and put into motion by a drive motor with a drive belt. The electrode (work piece) is fixed to the 
spindle with some kind of chuck and therefore rotates with exactly the same angular speed. The speed 
is specified by the drive motor, which, by its own, is regulated by a control instance. Simultaneously, 
the erosion wire is continually run by a wire guide. This represents the antipole for the electrode. In 
order to enable the accruement of erosion sparks the working point is continually supplied with 
dielectrics. The electrode on the other side gets its power from graphite brushes which force the 
current conduction inside the ball bearing of the rotary spindle to decrease. The drive motor's electric 
circuit is strictly disconnected from the electric circuit used for the erosion by an insulating plate. The 
rotary spindle and drive motor are continually provided with compressed air, so that any intrusion of 
liquids or removed material is avoided. 

4.2 Bayesian networks for modeling product use knowledge 
Bayesian networks can model dependencies between incidences like e.g. breakdowns or maintenance 
adequately on the basis of probabilistic constructs. Here, a Bayesian network represents a causal or 
probabilistic net which is appropriate for representing uncertain knowledge and resulting possible 
conclusions. It consists of a directed acyclic graph (DAG) in which nodes represent incidences as 
random variables and directed edges represent conditional dependencies. Every node is given a 
conditional probability distribution of the random variable it represents. If new critical values appear, 
updated probability distributions of other random variables can be calculated by means of dedicated 
nodes in the Bayesian network.  
A Bayesian network consists of a qualitative structural and quantitative numeric component. The 
qualitative component represents the coherences between the random variables of the problem 
scenario as well as the dependencies between product use information (like conditional dependent, 
independent) expressed through the graphbased structure. A Bayesian network can compactly 
describe the common probability distribution of all involved random variables by using known 
conditional independencies. Qualitatively, relations of dependencies and independencies can be 
depicted. Every random variable X, which possesses finitely many conditions x1, x2,…, xn, is allocated 
a table of conditional probability distributions for every possible combination of conditions a,…,z of 
the parent nodes A,…,Z of X as follows:  
 

 (1) 
 

Regarding especially the root nodes one is concerned with unconditional probability distributions as a 
priori distributions. If a Bayesian network consists of n random variables X1, X2,…, Xn , the common 
probability distribution of all nodes can be expressed as follows:  
 

 

(2) 
 

The direct parent nodes of the random variables  will be expressed in this context as . The 
example of the abovementioned rotary spindle presented in Figure 4 serves as illustration. Such a 
network structure can be achieved on the basis of empirically gained data with the help of a qualitative 
algorithm for learning structures of Bayesian networks [6]. For motivation and clearly arranged 
graphic visualization the rotary spindle, first consisting of the three random variables  

R: rotation speed  
M: last maintenance  
B: crack of drive belt,  

will be indicated with 2 conditions for each random variable.  
The node crack of drive belt (B) has the two parent nodes rotation speed (R) and last maintenance 
(M). In this rotary spindle net the node crack of drive belt has two conditions: true (t) and false (f). 
Node rotation speed has the two conditions high (h) and low (l) and node last maintenance has the two 
conditions less20d (l20) und greaterequal20d (ge20). The qualitative component of the Bayesian 
network is already given in Figure 4. 
The quantitative component in this scenario consists of the a priori probabilities P(R=h), P(R=l), 
P(M=l20) and P(M=ge20) in the root nodes as well as the conditional probability tables (CPTs) which 
are exemplarily represented for the node crack of drive belt as follows:  
 

 
(3) 
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< 10 h / week 0.0999
1050 h / week 0.7999

> 50 h / week 0.0999

high0.5999
low0.3999

< 20 d ago 0.2999
≥ 20 d ago 0.6999

high 0.2514
normal 0.5999

low 0.1485

true 0.0429
false 0.9571

rotation
speed

running
time

last
maintenance

ambient
temperature

crack of
drive belt

 
Figure 4: Influencing random variables causing the failure “crack of drive belt” 

Belief values represent the confidence that a given node is in a certain condition. The initial belief 
value Bel(R) is given for the root node R for example through the a priori probability P(R). For 
arbitrary nodes X the belief value Bel(X) can be declared as P(X|OX) in which OX  describes all nodes 
except X. A Bayesian network is initialized as soon as all belief values are calculated. If new 
information is available, the belief values have to be updated for all nodes. Efficient algorithms exist 
for the propagation of information (compare [15]). 
To calculate the overall probability that node crack of drive belt is in state true the CPT of the node 
crack of drive belt and also the two parent nodes, rotation speed (high/low) and last maintenance 
(l20/ge20), are required. Thereby P(B=t) can be calculated as follows: 
 

 
 

 
. 

(4) 

 

The introduced spindle scenario can be extended to 5 random variables by adding further product use 
information like the environmental parameter temperature and the sensor parameter machine running 
time. Through information granulation the characteristics of the conditions of the random variables 
can be fine or coarse granularly be realized (e.g. extension of the conditions of the random variable 
rotation speed from two (low/ high) to five (0 min1, 30 min1, 100 min1, 300 min1 and 500 min1) 
values). Here, it is essential to determine a balanced standard between inference with regard to 
interpretation time and the complexity concerning the CPT assignments of the represented Bayesian 
network. The rotary spindle network extended to 5 random variables cannot only be used for deducing 
and comparing quantity measures (for instance for determining which breakdowns happen most 
frequently) but also for investigating interrelationships between identified critical components and 
load, maintenance and environmental scenarios on the basis of “hatIf” analyses more closely.  

 se of atf nalsis in order to deduce room for product improvements 
Besides averaged distributions on how susceptible individual components are and under which load 
scenarios and environmental parameters the spindle operates at various customer locations, the model 
can also be used for simulation purposes. After identifying the failures or breakdowns which occur 
most frequently it is possible to conduct a detailed analysis on which factors influence a certain 
breakdown.  
Coherences between sensor data of the rotary spindle (rotation speed), incidences of maintenance over 
time (last maintenance) and breakdowns of individual rotary spindle components (crack of drive belt) 
can be deduced on the qualitative as well as the quantitative level. On which parameters do the 
different breakdowns depend qualitatively? How does the probability for the cracked drive belt 
quantitatively change in the extended example from chapter 4.1, if the spindle is used more than 50 
hours a week? 
These and similar questions can be answered on the basis of an underlying inference engine by 
applying evidences like “running time of the spindle more than 50 hours a week” (compare red bar in 
Figure 5) and propagating them in the network. The outcome of this is a doubling of error probability 
with regard to the crack of the drive belt on the basis of acquired product use information.  
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< 10 h / week 0.0000
1050 h / week 0.0000

> 50 h / week 1.0000

0 min1 0.0999
30 min1 0.2
100 min1 0.2

300 min1 0.3000
500 min1 0.1999

010 d ago 0.2656
1130 d ago 0.2

31100 d ago 0.4343
> 100 d ago 0.1

high 0.2514
normal 0.5999

low 0.1485

true 0.0858
false 0.9142

rotation
speed

running
time

latest
maintenance

ambient
temperature

crack of
drive belt

 
Figure 5: Influence of the weekly running time on a crack of the drive belt 

However, if it is additionally known that the last maintenance has taken place 010 days ago, the 
probability for a crack of the drive belt decreases to 3,14% (see Figure 6).  
 

< 10 h / week 0.0000
1050 h / week 0.0000

> 50 h / week 1.0000

0 min1 0.0999
30 min1 0.2
100 min1 0.2

300 min1 0.3000
500 min1 0.1999

010 d ago 1.0000
1130 d ago 0.0
31100 d ago 0.0
> 100 d ago 0.0

high 0.2514
normal 0.5999

low 0.1485

true 0.0314
false 0.9686

rotation
speed

running
time

latest
maintenance

ambient
temperature

crack of
drive belt

 
Figure 6:Influence of a running time of more than 50 hours a week on a crack of the drive belt in case the last 

maintenance has taken place 00 days ago 

In case the drive belt cracks nevertheless, on the basis of the acquired data material one can assume a 
high probability that the rotation speed and/ or the ambient temperature have been high (compare 
Figure 7).  
 

< 10 h / week 0.0000
1050 h / week 0.0000

> 50 h / week 1.0000

0 min1 0.0071
30 min1 0.0358
100 min1 0.0450

300 min1 0.2142
500 min1 0.6979

010 d ago 1.0000
1130 d ago 0.0
31100 d ago 0.0
> 100 d ago 0.0

high 0.9014
normal 0.0011

low 0.0975

true 1.0000
false 0.0000
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running
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ambient
temperature

crack of
drive belt

 
Figure 7: Most probable causes for a crack of the drive belt with regard to the set assignments for running time 

and date of last maintenance 

While the given example based upon fictitious data sets only serves the purpose of clarifying the 
potential of the introduced framework by means of an easily understandable example, in practice a 
significantly wider range of product use information accumulates. In contrast to the given example, 
many of the relations between machine sensor data, environmental parameters, breakdowns and 
incidences of maintenance can neither be known on a qualitative nor on a quantitative level.  
On the basis of machine learning algorithms and appropriate aggregation methods as presented in [6] 
coherences between product use information can be revealed and represented as a Bayesian network. 
With the help of the presented approach scenarios can also be simulated in case of complex networks 
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in the course of a “WhatIf” analysis and their impacts on relevant variables can be examined in order 
to support the product developer in deducing improvement potentials.  
To sum up, knowledge representation models automatically established on the basis of empirically 
acquired product use information (below also diagnosis models) offer the following possibilities:  
 
 Identification of the components breaking down most frequently 
 Clearly arranged graphic visualization of qualitative interrelationships 
 Discovering factors (scenarios of ambience, load and maintenance) that have an influence on 

certain breakdowns 
 Deduction of quantitative dependencies on the basis of empiric product use information 

 
Especially in case of complex machines being based on technologies which yet cannot be entirely 
“understood” the processed diagnosis models can serve as a basis for the deduction of design, 
implementation and use guidelines.  

 
The concept for a knowledgebased feedback of product use information into product development, as 
described in the first part of the paper, has been prototypically implemented. In this context, the PLM 
solution Teamcenter Engineering of Siemens PLM Software was chosen as a testbed. The 
functionality was enhanced with regard to creating and modifying product items, their association to 
the appropriate product type, linking maintenance events, condition monitoring data and diagnosis 
models, including support for visualization and “WhatIf” analyses [].  
For the appropriate representation of domain knowledge, which should also comprise breakdowns, 
incidences of maintenance and the dependencies between all involved elements besides sensor data 
and environmental parameters, in the second part of the paper various knowledge representation forms 
have been considered and critically evaluated with regard to the proposed requirements. Bayesian 
networks have proven to be the most promising model, especially in view of aggregation, 
interpretation, inference and visualization capabilities.  
In order to evaluate the fundamental practicability of the concept an exemplary scenario has been 
chosen, which describes the essential steps for the knowledgebased feedback of product use 
information.  
However, the need for an industrial testing and evaluation still exists. As the success of the concept 
strongly depends on the willingness of the customers to provide individual product use information, 
additionally, there is a high demand for a motivation concept for customers today. Nevertheless, the 
emerging trend at manufacturing companies as well as service providers to break with the traditional 
product and service understanding and to address the integrated consideration of products and services 
as customeroriented overall solutions (Industrial ProductService Systems (IPS²) []) will enable 
IPS² providers to get easy access to information generated in the product use phase at various 
customer locations. In effect this will facilitate the industrial implementation of the presented solution 
approach. 
The paper at hand focuses explicitly on the product area and excludes the service sector from 
consideration. However, the observable trend towards IPS² will demand an integration of additional 
types of feedback in the PLM concept. Basically, three different types of feedback can be acquired in 
addition to an IPS²: First, productrelated feedback, second, servicerelated feedback and third, IPS²
related feedback.  
Within the realms of productrelated feedback active feedback (subjective requirements, reviews, 
customer satisfactions) [7] and passive feedback (objectively measurable product use information) 
dealt within the present paper can be distinguished. Principally, this structure can also be transferred to 
servicerelated feedback. However, it is insufficient to cover feedback which can neither be directly 
allocated to products nor services. 
Such an IPS²related feedback could be, for instance, the request for a greater availability of a machine 
in the course of an availabilityoriented business model [3], which adequately induces certain product 
and service adaptations. The consideration of such mutual relations between product and service 
shares at the moment is still an object of basic research. In this context the concept for the knowledge
based feedback of product use information into product development presented in the paper at hand is 
one of the puzzle pieces necessary for an IPS² Feedback Management. 
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