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ABSTRACT
Affective design plays an important role in the development of products and services towards high 
value-added customer satisfaction. The main challenge for affective design is identified as how to 
translate affective customer needs into design elements. Towards this end, this paper formulates this 
problem as a rule mining process from the customer domain to the designer domain and proposes a 
rough set based K-optimal rule discovery method. A rule importance measure, taking rule semantics 
into account, is used to evaluate and refine the generated rules. A case study of truck cab interior 
design is also presented to illustrate the potential of the proposed method. 
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1 INTRODUCTION 
Affective design aims at incorporating customers’ affective needs into design elements that delivers
customers’ affective satisfaction [1]. Affect plays an important role in human information processing, 
such as perception, judgment [2], memory [3], and decision making [4], and so on. Hence, affect is a 
basis for the formation of human values and judgment. For this reason, it may be argued that product 
design models that do not consider affect are essentially inferior [5]. In addition, computer-aided 
product development technologies have reached a state of maturity so that design for performance or 
design for usability alone can no longer empower companies to sustain their competitive edges [6]. 
Traditional usability-based design approaches tend to facilitate product design in terms of customers’ 
functional needs that are limited to physical and cognitive requirements [7]. Customers’ affective
responses to a product, however, so far have mainly been addressed from an advertising and marketing 
perspective only. This has lead to the dilemma that what customers expect from a product based on the 
way it is advertised always deviates from what it actually ‘feels’ like in a variety of aspects [8]. 
The main challenge for affective design is to grasp the customers’ affective needs accurately and 
subsequently to translate affective needs into design elements (features) that match these needs [1]. It 
implies a mapping process from the customer domain to the designer domain, referred to as affective 
mapping. However, unlike approaches for structural articulation of functional requirements, such as 
requirement taxonomy [9], customer attribute hierarchy [10], and Functional Requirement (FR)
topology [11], few structured forms about affective needs for affective mapping are known, due to a 
qualitative nature of affective needs and impreciseness and ambiguity in their linguistic origin.
Although affective adjectives used in Kansei Engineering may alleviate the intangibility in describing 
affective needs to some extent [12], concrete mechanisms of affective mapping relationships seldom 
exist in practice [1]. In addition, customers tend to express their affective perception in a holistic 
fashion [13], whereas designers usually interpret affective needs as a collection of design elements 
(features), each of which contributes to certain affective aspects of the product. Coinciding with this 
mindset, affective quality is often evaluated according to a (weighted) sum of discrete assessments of 
each individual design element’s contribution towards the achievement of the desired affective 
perception [14]. Such contextual mismatching impairs the ability to convey affective needs from 
customers to designers.
Usually affective customer needs are identified as a set of affective descriptors. A large amount of 
affective adjectives are collected concerning the consumers’ feelings toward a product through user 
interviews, focus groups or surveys [12]. Then, the most relevant and appropriate terms are selected by 
domain experts, ranging in numbers from several dozens to several hundreds. The selected ones are 
further scrutinized and structured, either manually or statistically. In essence, there are two types of 
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mapping: qualitative and quantitative mapping. As for qualitative mapping, the simplest way is manual 
mapping, such as the Category Identification method [12]. Focus groups are used to provide reality 
checks on the usefulness of a new product design [15]. Quantitative methods include mainly statistical 
methods such as multivariate analysis. In addition, it is common to use regression analysis to compare 
customer characteristics and to determine their overall rankings. Some tools for this task are readily 
available, including multiple linear regression analysis [16] and general linear models [17]. Most 
affective descriptors, such as ‘beautiful or not’, do not exhibit linear characteristics. As a matter of 
fact, affective responses to products are fuzzy and vague in nature, thus assuming nonlinear 
characteristics [18]. As such, more advanced methods, including quantification theory type I, II, III, 
and IV [18], neural networks, genetic algorithms, and fuzzy logic [19], are deemed to be appropriate.
Ishihara et al. [20] apply neural network techniques to enhance the inference from Kansei words 
(affective adjectives) to design elements. Arakawa et al. [21] emphasize the properties of fitness 
functions for optimization of Kansei using genetic algorithms. Tsuchiya et al. [22] propose a procedure 
combining genetic algorithms and fuzzy logic for identifying affective needs regarding driving 
comfortableness of automobiles.
In order to explicitly identify relationships between the customer domain and the design domain, this 
paper proposes to apply data mining techniques to improve the identification of customers’ affective 
needs and the mapping of these needs to affective design elements, by reusing historical product and 
sales data. Data mining is a process of discovering previously unknown, potentially useful and 
understandable patterns from large data sets [23]. Jiao et al. [1] apply data mining techniques to 
identify affective mapping patterns as association rules. Despite the fact that a large number of 
association rules can be generated in the first place, semantics and logics regarding these rules must be 
further scrutinized and refined before any useful knowledge pattern can be deployed for decision 
making. Towards this end, this paper applies the K-optimal rule discovery method [24], owing to its 
strength in dealing with semantics in the rule mining process [25].
Further, the assessment of affectability of a given product has been traditionally carried out by experts, 
based on both their experience and rules of thumb. Assessment of affective satisfaction has been 
historically done on an ad hoc basis [26], where a number of heuristics are assumed a priori. In order 
to systematically evaluate affective satisfaction on a scientific basis, it is imperative to develop 
objective measures for the subjectivity and vagueness of affective needs. To address this problem, an 
importance rule measure based on the rough set theory is used, owning to its analytical power in 
dealing with rough, uncertain and ambiguous data [18, 27]. 

2 RULE MINING FORMULATION 
In this paper, affective mapping is formulated as a rule mining process from affective needs in the 
customer domain to design elements in the designer domain. Affective needs are usually expressed as 
a set of affective descriptors � �  i I

D d� , where I denotes the total number of affective needs in terms 
of affective descriptors. Target customers constitute a set, � �  ,t T

C c� where T is the total number of 

customers. The affective needs of the i-th customer, | {1,..., }ic C i T� � � , can be expressed as a subset,
{ } ,

ii i T iD d D D� � , where iT is the total number of this customer’s affective needs. 
Meanwhile, various product design elements can be extracted from the product documentation. These 
elements can be characterized by another set, { }i ME e� , where M is the total number of design 
elements. Each design element, (1 )ie i M� � � , may assume a number of element levels, 

* *{ } ,1
ki ik L kE e k L� � � , where kL is the total number of levels (instances) of ie , and k denotes the k-th 

level of ie . For example, the interior color (i.e., a design element) of a truck cab can have five element 
levels (blue, red, yellow, red, and grey, see Table 1). 
A possible combination of design elements with appropriate levels can be configured into a desired 
product specification, qP (1 q Q� � , Q is the total number of products) with regard to affective needs 

of the customer ic . This combination can be expressed as a set, * * *
12 21 4{ , ,..., }q JP e e e� , where J M� is the 

total number of design elements in this specification. This means that product qP is a combination of 
the first, second and J-th design elements with the second, first and fourth element levels, respectively. 
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Customer affective responses are usually associated with a holistic impression of the product, rather 
than summation of affective quality from individual design elements. However, customers may select 
a design element with a specific desired element level. The mapping relationships from affective needs 
( iD ) to a particular product specification ( qP ) are denoted as mined rules i qD P� , where an 

individual rule *
i ikd e� indicates an inference from the antecedent ( i id D� ) to the consequent 

( * *
ik ie E� ).

3 ROUGH SET BASED K-OPTIMAL RULE DISCOVERY 
This paper examines the rule mining problem using K-optimal rule discovery, which is a well-
established data mining technique that returns the K most interesting rules according to specified 
measures [24, 25]. It can also speed up the rule discovery task by allowing pruning of areas of the 
search space that is devoid of the top K most valuable rules. In the context of rule mining, a general
rule can be formulated as * * *& & & & & &i j k ia jb kcd d d e e e�� � , where

, , ,i j k id d d D� 1 i j k I� � � �

and * * * * * *,1 , ,1 , ,1 ,1 .ia i a jb j b kc k ce E a L e E b L e E c L i j k M� � � � � � � � � � � � � The rule can be 

interpreted as the occurrence of affective descriptors � �,..., ,...,i j kd d d associated with the occurrence 

of design elements ie with a-th level, je with b-th level and ,…, ke with c-th level. It can be concisely 

denoted as ,d eX Y� where item set � � ,  , ,d
i j kX d d d� � and item set � �* * *, ,...,e

ia jb kce e eY � are 
nonempty sets of conditions called the antecedent and consequent, respectively.
K-optimal rule discovery can be expressed as a 5-tuple C, ,G, ,K�� � � , where C is a nonempty set of 
conditions; � is a database of records � � ,h HR R R C� � , where H is the total number of the records, 

h h hR P D� � is the h-th record, and � �,  , ,h h h
h i j kD d d d� � , implying product hP configured by certain 

design elements is associated with affective needs hD ; G is a set of constraints on the rules in the 
solution space; � �: d eX Y� � ���� is a function from rules and databases to real values and 

defines a value measure such that the greater � �,  d eX Y� � � , the greater the (potential) value to the 
user of the rule given the database; and K is the number of rules to be discovered. The procedure is as 
follows: First, the user specifies the rule value measure � , a set of constraints G and the number of 
rules to be discovered K . The system then returns the K rules that optimize � with respect to the 
database � within constraints G . The solution � � � �d eC, ,G, ,K X Y�� � � is a function, satisfying
the following:

� �
� �� � � �
� �� �

� �� � � � � �� �

solution : 

      CSsolution

      solution : 

      CSsolution : ,d e d e d e

s C, ,G, ,K

s C, ,G s K

r C, ,G, ,K r s

X Y s,U V C, ,G s X Y , U V ,

�

�

� �


 � �

� � � � �

�
 � � � �

�
 � � � � � 	 � � � � �

(1)

where CSsolution denotes a function to obtain solutions to a constraint-satisfaction rule discovery task 
(Webb and Zhang, 2005), and 

        
� � � � � � � �� �� �CSsolution satisfiesd e d e d eC, ,G X Y X C Y C X Y , ,G .� � � � � � � � �       (2)

K-optimal rule discovery uses leverage as the value measure � , and with respect to the 
rule ,d eX Y� it is defined as follows (Webb, 2003):

� � � � � � � �leverage support support support ,d e d e d eX Y X Y X Y� � � �	                               (3)
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where � �support � is the proportion of records that contain item set ‘ � ’, For example the support of 

item set dX is defined as follows:

         � � � � � �� �support | / ,d dX X X X X H� �� � �                                                                           (4)

where X is an item set in the database � and � denotes the cardinality of a set. Leverage is the 
difference between the observed frequency of d eX Y� and the frequency that would be expected if 

dX and eY are independent. In other words, it measures the number of additional records that an 
interaction between dX and eY involves above and beyond those expected if one assumes 
independence of dX and eY . This directly represents the volume of an effect and hence will often 
directly relate to the ultimate measure of interests to the user such as the magnitude of the profit 
associated with the interaction between dX and eY .
K-optimal rule discovery generates K valuable rules and employs leverage to quantitatively measure 
the “quality” of the rules. However, the real value of a rule, in terms of usefulness and importance, is 
subjective and depends heavily on the particular domain and business objectives. Usually, in order to 
find enough rules, the value of K is large. Hence, it is often a tedious task for domain experts to 
evaluate rules manually. Therefore, it is necessary to specify criteria for rule goodness evaluation. 
Before the target data is fed into the system for K-optimal rule discovery, redundant attributes can be 
excluded by a rough set approach [28], based on which rule generation would be more efficient and 
more effective [27]. 
One important concept in rough set theory is reduction. A reduct is defined as a subset of attributes in 
a decision table that by themselves can fully characterize the knowledge in that decision table [28]. 
Based on Li and Cercone [27], let � �r R� and � �r R� be the respective sets of reducts and rule sets,  
where R denotes the total number of both reducts and rule sets, as each rule set r� is generated from 
reduct .r� Assume ( 1,..., )ri r i R� �� � is an individual rule from rule set r� , where rR is the total 
number of rules in the .r� Then the rule importance measure i� for the individual rule i� is the total 
number of this rule generated in all the possible rule sets divided by the number of reducts, as shown 
in Formula (5). For example, if there are 10 reducts and i� appears in 6 out of 10 rule sets, then i� is 
60%.

� �
,r i r

i R

�
�

� �� ��
�                                                                                                               (5)

where � denotes the cardinality of a set. The rule importance measure is objective which provides a 
straightforward and direct view for evaluation purposes and capitalizes on the concepts of reducts to 
removes redundant attributes [27].

4 CASE STUDY 

4.1 Affective Need Elicitation
A case study of the interior design of a truck cab is presented to demonstrate the affective mapping 
approach proposed. As shown in Figure 1, a total of seven design elements are identified from six 
existing truck cabs by senior design engineers, taking into account factors such as cost, material, style,
and manufacturability. These design elements are further categorized into 18 levels of instances, as
shown in Table 1. A total number of 203 affective descriptors are identified from truck magazines and 
truck company websites. After consultation with industrial experts and human factors specialists, a 
total of 61 adjectives are selected as the ones most relevant to describe affective aspects of a truck cab.
These affective adjectives comprise the semantic space of affect for truck cabs.
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Mat Bunk Light

Storage Wall
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Figure 1.  Truck cab interior design

Table 1. Design elements and their levels for truck cabs 

Code Description Code Description Code Description
e11 Bunk-foldable e33 Seat material-cloth with soft nap e62 Wall-flat
e12 Bunk-unfoldable e41 Light-embedded in the wall e71 Interior color-yellow
e21 Storage-above bed e42 Light-protruded from the wall e72 Interior color-green
e22 Storage-beside bed e51 Mats-textile e73 Interior color-blue
e31 Seat material-fabric e52 Mats-rubber e74 Interior color-red
e32 Seat material-leather e61 Wall-sponge attached e75 Interior color-gray

4.2 Affective Descriptor Analysis
Affective descriptor analysis is used to extract typical affective descriptors from the affective semantic 
space formed by the 61 affective adjectives identified. As affective needs are generally vague and 
highly unstructured, analytical tools with large tolerance for ambiguity and high level of prediction 
accuracy are needed to conduct the affective descriptor analysis. Among many others, clustering 
analysis, as the black box prediction engine, can be very effective and is often among the best 
performers when applied to real data problems (Friedman et al., 2001).
Differential Emotions Scale (DES) analysis (Osgood et al., 1975) is first used with 7-point Likert 
scale, ranging from 1 (absolutely not) to 3 (not really) to 5 (much) to 7 (very much) by 36 participants.
In total, 216 evaluations for six existing truck cabs are collected, producing a 216�61 matrix. This
data is then subject to clustering analysis, aiming to group similar adjectives together. Hierarchical 
clustering analysis with a complete linkage agglomerative method (Friedman et al., 2001) is used to 
find representative affective descriptors. A dendrogram with 30 nodes is generated and depicted in 
Figure 2. It consists of many inverted U-shaped lines connecting nodes in a hierarchical tree. The 
height of each inverted-U represents the distance between the two nodes being connected, which 
provides a complete description of the hierarchical clustering in a graphical form. Cutting the 
dendrogram horizontally at a particular height partitions the data into disjoint clusters represented by 
the vertical lines that intersect it. A reasonable level of granularity is to group the affective adjectives 
into 10 clusters cut by the horizontal line shown in the figure. The representative affective descriptor
for each cluster is shown in Table 2. 
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Figure 2 Dendrogram of affective descriptor clustering analysis

Table 2 Clustered affective descriptors for truck cabs

Descriptor Code Descriptor Code
Clean d1 Homey d6

Boring d2 Comfortable d7

Cool d3 Cheap d8

Modern d4 Functional d9

Luxurious d5 Personal d10

4.3 Affective Rule Mining
The transaction database is obtained from fifteen experienced truck drivers via an interview
(http://www.cater-ist.org/), where each driver is asked to evaluate six truck cabs against 10 affective 
descriptors. Each record in the database denotes the presence of a set of affective needs and the 
corresponding customers’ selection of design elements. A sample record (see No. 3 in Table 3) is (e11,
e21, e31, e41, e51, e62, e71, d5, d9), which indicates that the truck cab is characterized as follows: ‘foldable 
bunk, above-bed storage, fabric seat, embedded light, textile mats, flat wall, and yellow interior’; the
associated affective needs are ‘functional and luxurious’. Two records are missing and thus 88 records
are organized into the transaction database. A selected part of these records is shown in Table 3.

Table 3 Transaction database 

No. bunk storage seat_material light mats wall interior_color affective 
descriptor

1 e12 e21 e31 e41 e51 e62 e71 d7&d9

2 e12 e21 e31 e41 e52 e62 e72 d3

3 e11 e21 e31 e41 e51 e62 e71 d5&d9

… … … … … … … … …
86 e12 e22 e31 e41 e51 e62 e73 d2

87 e12 e21 e31 e41 e51 e61 e74 d8&d10

88 e12 e21 e33 e42 e52 e62 e74 d6&d10

A Rough Set Exploration System (RSES) [29] is used to generate reducts with genetic algorithms as 
shown in Table 4. A K-optimal rule discovery algorithm is then employed to generate rule sets for 
each reduct set with the data mining tool – MagnumOpus [25]. In this example, the value of K for each 
reduct is 20. The set of constraints G is restricted by setting the minimum support at 0.04, minimum 
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confidence at 0.2 , maximum size of the antecedent of a rule at 4, and a single condition (i.e., only one 
affective descriptor) in the consequent only. 

Table 4. Reducts generated by RSES with genetic algorithms

No. Reducts
1 {bunk,storage, mats, wall}
2 {bunk, mats, interior color}
3 {bunk, seat_material, interior_color}
4 {bunk, lights, interior_color}

4.4 Result and Analysis
The results are ranked by the rule importance measure (larger than 25%) as shown in Table 5. The 
leverage, support, and confidence of each rule are also given.

Table 5. FAM relations ranked by the rule importance measure

No. Rules Rule Importance
measure Leverage Support Confidence

1 d9 � e11 100% 0.050 0.068 0.333
2 d8 � e12 100% 0.015 0.273 0.960
3 d9 � e71 75% 0.079 0.114 0.556
… … … … … …
20 d6 � e42 50% 0.027 0.045 0.222 
21 d2 � e74 50% 0.025 0.068 0.500 

The K-optimal rule discovery method returns a controllable number of rules that optimize the rule 
value measure � (leverage) within the constraints G . In this case study, there are 196 rules generated 
from the original data with the only constraint on support (0.04) and confidence (0.2) whereas the 
numbers of rules are reduced to 29, 34, 24, and 24 for each reduct with the same constraints. In 
addition, the K-optimal rule discovery algorithm further reduces the rule number to 20 for each reduct
(i.e., K = 20, depending on different situations). Rules 1 and 2 (if the bunk is foldable, then it is 
functional; if the bunk is unfoldable, then it is cheap) have an importance of 100%, which are said to 
be more important than other rules. While support is usually used to measure how frequently the items 
appear together, it cannot provide the significance of a rule. The leverage measure addresses the rules 
in terms of the independence between the antecedent and consequent. In other words, it takes a 
perspective of the degree of interaction between affective needs in the customer domain and design 
elements in the designer domain. On the other hand, these mined rules are used to predict the 
relationships between two domains for future affective design. So accuracy and generality are two 
critical measures. Accuracy is often based on cross-validation while generality is for future data. 
Leverage is also called ‘weighted relative accuracy’ which trades off generality and relative accuracy
[30]. Further, the rule importance measure takes the semantic meaning of the data into consideration, 
and evaluates the significance of a rule based on the significance of attributes [31]. This is very 
important to leverage the ‘ambiguous’ affective customer needs, as it often entails additional effort to 
interpret the outcome and to judge the validity of the outcome by domain experts.
Another point worth pointing out is that people’s affective perception of products is not just the sum or 
weighted sum of its design elements, but more precisely the patterns in the way people and products 
interact in a holistic fashion [13]. In this sense, it is arguable that one very negative single element can 
destroy the positive emotions towards the whole product. Although the rules generated in the form of 
single element associated with one or more affective descriptors, these inferred rules are derived based 
on previous interactions between customers and products in a holistic fashion. One particular rule can 
be traced back to the previous interaction scenario such that the designer is aware of other design 
elements in that product. Nevertheless, if designs resulted from the rules-of-thumb by individual 
designers will not have this valuable information. In addition, not only positive affective descriptors 
are encoded, but also negative ones (e.g., boring). Those elements associated with negative ones can 
be identified such that it can avoid the situations when one negative single element can destroy the 
overall positive emotions.
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5 CONCLUSIONS 
The purpose of affective mapping is to find valuable relationships between the customer domain and 
the designer domain for future design. Rough set based K-optimal rule discovery effectively mines 
valuable rules, with consideration of interactions between customers and designers using leverage as 
the measure. Further these rules are ranked by the rule importance measure by taking rule semantics 
into account. Therefore, the mined rules can act as an interface between customers and designers. 
While the customer domain depicts how customers perceive and respond to products holistically in 
terms of their affective appealing, the design domain delineates how the designer can achieve affective 
design by configuring available design elements based on the acquired rules. As a result, given a 
particular customer’s affective needs, the designer can configure the product in a personalized way 
without the tedious elaboration process with the customer and marketing staff. In such a manner, 
companies, in pursuit of products that are not only safe and efficient, but also pleasurable to use in 
terms of customers’ affective satisfaction are more likely to gain competitive edges.
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