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Abstract 

The topic of ‘design for value’ has lately attracted a great deal of attention within the engineering design 

community. ‘Predicting’ the value of a future solution is however difficult, especially in early design 

phases. Modelling and simulation is believed to be able to support this challenging task. A simulation 

process for value-driven engineering design is presented. The performances of a design concept along 

the lifecycle are aggregated to a monetary system value function. The results of this multi-model 

simulation environment for value are displayed through a colour-coded CAD model for easier 

interaction. Verification activities indicate that enabling effective design space exploration and 

visualization of cause-effect relationships become important elements in order to ‘think together’ using 

a simulation driven design approach. Furthermore, the proposed multidisciplinary ‘value model’ fosters 

cross-functional knowledge sharing and collective deliberation about the value, forcing stakeholders to 

synthetize their perceptions about the value of a design and to discuss where conclusions differ. 
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1 INTRODUCTION 

A key need for engineering designers is to become more effective in decision-making during the early 

design phases, which means to be able to ‘predict’ the future impact of a design regarding a multitude 

of aspects. Often, engineers make extensive use of modelling and simulation, as it allows to test 

important characteristics long before a physical prototype is built (Bylund et al. 2004; Wall 2007). For 

example, Finite Element Analysis (Adams and Askenazi, 2009) is used to predict how a product reacts 

to real-world forces, vibration, heat, and other physical effects. Literature (e.g. Isaksson et al., 2009) 

recognizes the importance of models as a means for verification, but stresses also the need for a broader 

view on how simulations are used to support new product development, i.e., utilizing simulation to guide 

on what to develop rather than focusing if the product does not fail regarding performance. This focus 

on innovation and models has resulted in a plethora of multi-domain simulations (Bertoni et al., 2016), 

which however still leaves designers with the challenge of making thoughtful trade-off decisions 

between conflicting attributes (Isaksson et al., 2013). A solution to this challenge has been explored by 

research in Systems Engineering (SE). Value-Driven Design (VDD) (Collopy and Hollingsworth, 2011) 

for instance envisions the idea of aggregating all these multidisciplinary models in a ‘value model’. Such 

construct is intended to simulate how much customers ‘value’ certain capabilities against each other. In 

original formulations of VDD, the concept of optimization is pivotal, as it is appealing to think about 

simulating and optimizing such ‘value model’ in order to find the best design (Soban et al., 2012). 

However, optimization of a value model is challenging in the early design phases. The full set of data 

may not be available at these stages, making the results of the optimization exercise having little 

meaning. Still, firms that want to strengthen their value contribution focus based on simulations, to be 

able to identify promising designs without requiring the test of expensive physical prototypes. This study 

targets the need for an increased value focus by an effective use of multi-domain simulations, and has 

been organized around the following research question: 

How can simulation supports be defined to facilitate deliberation about value in early design? 

This question connects to one of the central concerns outlined in the VDD research agenda (Soban et 

al., 2012), which is related to the methodological enablers that foster a more value-oriented approach to 

engineering design. A set of simulation-based supports have been identified and outlined in a framework 

for value-driven engineering design. The deliverables of this study intend to provide insights for both 

research and practitioners who have the ambition to develop and test new or improved versions of such 

decision supports. 

2 RESEARCH METHODOLOGY 

The study, focused on developing a design support, can be described as a Prescriptive Study (PS) of a 

research Type 5 in the Design Research Methodology (DRM) framework (Blessing and Chakrabarti, 

2009, p.60). DRM suggest to develop a support in co-evolution mode (Blessing and Chakrabarti, 2009, 

p.156): early, high-level requirements guide the generation of potential solutions, their evaluation leads 

to the generation of solution-specific requirements, which are then addressed by modifying the solution 

to add further detail, and so forth (Nidamarthi et al., 1997). Empirical data has been collected during 

meetings (held by-weekly, over a seven months period) within the frame a Swedish research project in 

collaboration with a road compaction equipment manufacturer. Participants were industrial experts who 

are working in different organization of the company (i.e. engineering, marketing, service, 

manufacturing) and have an active role in the selection of new product concepts. In these interactions, 

visual demonstrators of emerging concepts for modelling and simulation were presented, acting as a 

means for random stimulus (Cross, 1994) to generate alternative proposals for design support. The data 

has been collected using field notes and reflections, which was then distributed to the participants for 

verification and their opportunity to change statements. The screening of the preferred support concepts 

was performed using a selection matrix (Ulrich and Eppinger, 2011) adopting a set of evaluation criteria. 

The criteria were derived from the field notes by analysing the collected material using a noting patterns 

technique (Miles and Huberman, 1994, p.245), which requires the fieldworker to generate unstructured 

“patterns” of statements and to add evidence to the same patterns with additional data in order to find 

“recurring regularities”. The following chapters discuss the criteria used for screening and present the 

preferred concepts for simulation supports, synthetized in a “simulation process for value driven 

engineering design”. 
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3 THE NEED FOR INTERACTION WITH SIMULATION MODELS AS A WAY 

TO ‘THINK TOGETHER’  

The interactions with the industrial practitioners converged initially on the challenges related to the 

effective use of models to determine the value of an engineering system. A concern about the idea of 

running design optimization through the adoption of a ‘value model’ is related to the amount of data 

available in early design. To run optimization, designers would have to wait and focus the population of 

the value model by detailing a few design alternatives, and to optimize this value model only after a 

substantial set of data has been collected. In this way, decision could be based on reliable design 

optimization results, although to the cost of delayed decisions (i.e. increased lead time). Practitioners 

stressed instead the potential of cross-functional interaction to deliberate about value, using previous 

experience, gut feeling and a number of assumptions. In this context, professionals often show models 

and simulation results to express their reasoning and represent their opinion on the system under 

development. Models hence act as a means to ‘think together’ (Larsson, 2003) to reach a shared 

understanding. 

A major concern in early decision-making is deliberating upon conflicting value attributes, especially 

regarding the case of trade-offs between customer requirements that are of a less tangible nature than 

technical system performances. A central question is whether or not simulations are able to represent 

conflicts in a way that allows team members to rapidly identify and solve them through discussion 

(Carlile, 2002). The following anecdote, told by a service manager, exemplifies the challenge connected 

to this situation. In a previous development project, the design of the machine frame resulted in a shape 

that made it practically impossible for the customer to replace the water tank during the lifecycle. Earlier 

in the project, the service manager attempted to convince the design team regarding the negative 

consequence of the proposed frame design. The service manager was however unsuccessful as the 

engineering department was able to generate early models supporting the claim that the proposed frame 

design had positive impact on overall robustness as well as well as a reduced investment cost. The 

service manager expressed some frustration with this, as he had to wait until the design was more 

detailed to show that the customer would have had to lift the whole machine just for replacing the water 

tank. Hence, at that stage it was decided to change the whole frame design resulting in expensive and 

time-consuming rework. 

The abovementioned anecdote suggests that one group (engineering, project management) felt more ‘at 

home’ than the counterpart (service), because of what the models were able to represent (investment 

cost, structural strength). As a consequence, the service manager found it difficult to engage in the 

discussion, and to effectively provide arguments that shifted the balance of power towards other value 

contributions. This implies a high degree of risk, since designers may disregard more value-adding 

options in a competitive marketplace. To this regard, working with value models (or value functions) is 

seen as a way to exploit current models outside their specific discipline, by integration with other ‘ad 

hoc’ models able to represent more intangible properties of a system. The main effectiveness in the value 

model lies in the way that it allows cost and benefits to be ‘summed up’. Practitioners expressed a 

preference for a monetary value function to engage all the stakeholders with a practical, convenient 

measure targeting the whole system lifecycle. However, the team needs to rapidly screen from the 

overall value model result to influential design variables to enable collaboration and reach consensus 

about which parts of a large design space to focus on (Clarkson et al., 2004). A possible way to obtain 

these is to explore the design space adopting a design-of-experiment (DOE) approach (Giunta et al., 

2003). DOE is a technique for choosing a limited set of data samples in the design space with the goal 

of maximizing the amount of information produced. DOE allows to predict the trends in the simulated 

response data, i.e. determine the relationship between design variables (factors) affecting a process and 

the output of the studied process.  

Practitioners expressed a major concern regarding the scenario of aggregating multi-domain models by 

means of a value model to foster cross-functional integration.  Interaction and multidisciplinary 

collaboration through simulation is challenged by the fact that the multi-domain models are perceived 

by designers as ‘black-box functions’ (unknown function properties), data is vague and the exploration 

goals are often implicit (Salustri et al., 2008). Respondents in the case study stressed the importance of 

visualisation as a vital tool to allow users to describe the solution space. Among common examples of 

visualization techniques (such as scatter plots, parallel coordinates, and histogram plots), practitioners 

expressed an interest for the approach adopted by Bertoni and others (2013), who develop a lifecycle 
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value representation approach connecting qualitative value scores (based on a 9-point scoring system) 

to the actual CAD representation of the product under analysis. Value scores are mapped to a colour 

scale to highlight areas that are negatively or positively affected by a new design. This type of 

visualisation is based on analysis of "variation" among and between data samples to be visualised. A 

general method for this is analysis of variance (ANOVA), see for example (Obayashi et al., 2010; Shan 

and Wang, 2008). 

4 THE SIMULATION PROCESS FOR VALUE DRIVEN ENGINEERING 

DESIGN 

The findings from the case study led to the definition of a generic simulation process for value-driven 

engineering design, further detailed in the following chapter. Figure 1 depicts the simulation process. 

The input to the process are the results from a previous qualitative assessment loop and is composed of 

6 simulation-driven areas, which are linked together to promote a stronger focus on the monetary 

quantification of all the aspects emerging from the qualitative analysis, even the most intangible ones. 

The proposed value function insists on a conceptual approach for lifecycle costing (see Gupta, 1983), to 

emphasizes flexibility, learning and accommodate the volatility of hypothesized relationships. The Total 

Cost of Ownership (TCO) equation used in the case study builds on cost drivers derived from the work 

of Ferrin and Plank (2002). 

 

Figure 1. The generic simulation process for value-driven engineering design 

The simulation process populates this general TCO function by linking the calculated performances of 

a design (through CAD and functional/engineering models) to TCO items (by means of a factory model 

and lifecycle performance models). Each step of the process is described in the following sections, and 

exemplified in a case related to the redesign of a 1.7 tons asphalt compaction machine. The case focuses 

on the design of the front part of the machine and considered 7 main subsystems/components: drum, 

frame, forks, bearings, engine, engine hood, eccentric. Figure 2 shows a simplified representation 

indicating the position of the 7 sub-system in the design configuration. 

 

Figure 2. Simplified representation indicating the 7 sub-systems in the case study 

The process was implemented in a simulation environment where the software deploying the simulation 

areas (e.g. Autodesk Inventor©, Matlab©, Anylogic©) were linked together using MSExcel® as 

interface/server. Designers can define a system configuration, run the functional/engineering models 

and the lifecycle performance models from MS Excel©. The models take inputs from Excel, run 

calculations and output back to Excel. Design exploration and results visualization were implemented 
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by means of DOE and ANOVA algorithms. The next sessions present each step in the process. Every 

session is introduced by the findings from the empirical study and ends explaining how the practitioners’ 

preferences were translated into a simulation support. 

4.1 Create parameterized CAD model and run functional/engineering models 

In the early phases the team is interested to look at the cost and value provided by the major sub-systems 

and components of the product under development. The objective here is to highlight which areas of the 

existing machine require a redesign effort. Another aspect of interest in this context is to understand 

how a change in one sub-system ‘propagates’ to other sub-systems and what is the overall effect on 

value and costs. For example, setting a bigger and more powerful diesel engine would increase the 

machine velocity and compaction energy provided to the ground. However, this change may require a 

bigger engine hood, increasing costs and negatively affecting value, as it worsen the visibility for the 

operator. In this context, working with functional models as a structured representation of the system 

under analysis is a preferred component that would facilitate such understanding process: “you want to 

have a systematic approach for working with functional models, with formulas (and data) that you can 

sum up […] you can systematically break down the requirements to components, from an overall system 

of the various sub-systems, in order to understand their relationships. And you can reuse the functional 

models, since they are very similar for almost all the machines.[…]At this stage you must also consider 

that the model should not be too advanced, you need to find a trade-off”. 

A simplified schematic description of the functional model developed in the case study is given in Figure 

3. For an asphalt compactor, the main functionality is the ability to compact soil. However, to be able 

to compact soil additional functionality such as a power supply, transmission, etcetera is needed. 

 

Figure 3. Functional model 

This functional model is populated by engineering models (for example in the form of differential 

equations, algebraic equations and mathematical logic) in order to estimate the performances of the 

system (listed on the right side of Figure 3). In the case study, for a given system configuration, a 

compaction model (implemented in Matlab©) calculates the amount of energy per time unit which is 

transferred to the ground through the drum. An energy model (Matlab©) calculates required energy and 

associated fuel consumption for the suggested machine design and a finite element model (implemented 

in Abaqus©) of the frame verifies the structural strength to avoid structural failure during operation. For 

the population of such engineering models, geometric and technical descriptions of the major sub-

systems and components under analysis is required. This information is supplied through a parametric 

CAD model (implemented in Autodesk Inventor©). Geometric information from the CAD model is also 

used to assess the visibility from the operator's position. 

4.2 Calculate cost of major sub-systems and components 

The cost for the sub-systems of the design under analysis are estimated through the use of a factory 

model. The model follows an activity-based methodology (Langmaak et al., 2013), in which the cost 

rates of the manufacturing and assembly cells are multiplied by the operation times derived from scaling 

rules. Literature suggest to develop such models using a dynamic technique, as this allows the 

improvement of cost estimation by analysing queues, utilization and idle capacity costs. Furthermore, if 

such factory simulations are directly connected to the CAD geometry, feedback of cost estimation results 

can be given directly to a design team within their design environment (Jinks, 2012). A major problem 

in traditional factory simulation models is that the logic is created on a specific case (Randell and 
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Bolmsjo, 2001), which means that the analysis of new design alternatives requires personnel and time 

investment to adapt the simulation model (Jinks, 2012). The proposed simulation environment 

implements a flexible discrete-event factory simulation model (Hübl et al., 2011) developed in the 

Anylogic® software. The model imports input data from an MS Excel database: 

• Part geometries to be manufactured (e.g. frame) and purchased (e.g. engine) from CAD model. 

• Machine groups: which machines and assembly stations are available in the factory layout. 

• Routing: indicates the sequence for the parts across the machine groups. 

• Manufacturing volumes, unit material costs, operation times, machine cost rates. 

The advantage of this type of model is the ability to generate factory simulation models based on the 

input data for any kind of factory layout and system design. The design components enter in the 

simulation model and ‘route’ across their assigned machine groups and assembly stations using ‘enter’ 

and ‘exit’ port items available in Anylogic (Hübl et al., 2011). For example, the frame is constituted by 

five parts. Through the CAD geometries the weight can be calculated (via the functional model), and 

hence its material cost. The parts flow to a laser cutting machine, and its manufacturing cost is calculated 

through a scaling rule (between laser cutting time and the steel plate length and thickness). Finally, the 

frame moves to an assembly station, where it waits for the drum and the fork to be assembled together. 

The assembly cost is calculated by a scaling rule between the weight of the parts and the assembly time 

(finally multiplied by the assembly station cost rate). 

4.3 Populate TCO function through lifecycle performance models 

Respondents in the case study highlight that the overall value of a system cannot be directly derived 

from its ‘endogenous’ performance attributes, value is very dependent of the systems impact on the 

customer’s operational process (Brathwaite, 2011). For example, the value of a machine with lower fuel 

consumption is dependent on how much the product is used, and on the fuel price of the country where 

the customer is using the machine. Hence, the simulation support should enable the calculation of the 

system performances along the lifecycle in order to be ‘summed up’ to the overall TCO function. In the 

simulation process, this is done by means of ‘lifecycle performance’ models. Such models take as input 

the system performances calculated through the functional/engineering models and calculate their 

impacts on TCO. This requires the definition of a customer operational scenario (or use case), since 

compaction performances can differ between type of application (parking lots, large arterial roads, 

roundabouts and residential areas) and differ between countries (due to climate, asphalt type, support 

infrastructure etc). 

The case study implemented two lifecycle performance models based on a discrete-event simulation 

(DES) technique. The advantage of DES compared to static models (developed, for example, in MS 

Excel©) is that it allows to better model dynamic behaviours (such as queues, idle states, downtimes) 

as well as provides a more intuitive graphical representation. 

The two models were developed in the AnyLogic® software environment. The first is a ‘usage model’, 

which can output: 

• The net utilization time for the machine in a year.  

• The net distance covered by the machine in a year. 

• The net total fuel consumption in a year. 

• The number of transport operations between compaction sites in a year. 

The second module is a maintenance model which was used to understand the impact of the design on 

maintenance and repair operations. This model aims at calculating the increase or decrease of 

maintenance costs due to the introduction of new designs in comparison with a selected baseline. The 

model was developed to 1) calculate regular maintenance cost 2) calculate the expected repair cost and 

3) estimate the average downtime, and hence the availability of the machine along its lifecycle. Figure 

4 shows the graphical user interface (GUI) where the usage and maintenance models are linked to their 

input models (CAD and functional model) (figures are only meant to be demonstrative). 
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Figure 4. Screenshot of the GUI interface linking functional and lifecycle performance 
models 

Designers can run the linked models in sequence via the GUI and compare the selected configuration to 

another configuration selected as baseline, by means of TCO and its associated cost items. The GUI 

allows also to change the usage scenario, enabling what-if analysis (for example, a different application 

or an increase in fuel price during the time of ownership). 

Modelling relationships between systems performances and TCO items in the lifecycle performance 

models requires input from all the members of the cross-functional team. Additionally, it forces team 

members to quantify the most ‘intangible’ contributions of the design. For example, the impact of the 

operator's visibility on operation efficiency was modelled as reduced machine velocity, were attainable 

velocity is inversely proportional to the size of the blind area surrounding the machine (based on 

feedback from the industrial practitioners). This allows to quantify the impact of visibility on operational 

costs, and to make trade-off decisions with other performance attributes (such as compaction capacity).  

4.4 Design space exploration through DOE 

Manually performed what-if analyses prohibits extensive exploration of a vast design space. To achieve 

the full gain of simulation-driven design, structured and automated approaches are needed. The proposed 

simulation process implements a semi-automated DOE tool for the exploration of the design space and 

presents it to the end-user through a GUI, see Figure 5. 

 

Figure 5. Screenshot of the GUI for DOE studies 

Fundamental input to the GUI is a description of the studied design concept based on its parametric 

CAD representation. When the CAD model is created, design parameters intended to be selectable as 

design variables in the DOE are defined. After importing design data from the CAD model, a list 

containing all selectable variables are generated in the GUI and the user may define which of them to 
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include in the DOE study. The next step is to define a usage scenario and choose which usage variable 

to vary in the study (none of the usage scenario variables are varied in the example of Figure 5). After 

that all variables and their bounds are set an appropriate DOE method is selected. System performances 

and TCO items for each variable combination stated in the experimental design are then evaluated by 

running all the simulations (functional, factory, lifecycle) automatically in sequence. Result analysis is 

then performed either on a system or component level, i.e. on a higher level analysing how components 

effect TCO or its items or on a lower level how design variables effect component performance and 

visualized in a data plot. 

Simulation models need near to real-time performance regarding execution time to enable simulation of 

new scenarios during decision meeting. In most cases this is not attainable. If so, thorough design space 

exploration needs to be performed before hand, generating and saving design data that at a later point 

can be scrutinised in a collaborative manner. 

4.5 Navigate through the simulation results and make decisions 

Linking multiple models to the final TCO equation allows the design team to explore the design space 

at high speed. However, the risk of using such a ‘pool of representations’ is that some models (and the 

associated simulation results) would be grasped by only the professionals working within the 

organizational function that developed them. This presents a hinder to the cross-functional knowledge 

sharing process. In this context, practitioners stress the importance to condense the results of simulation 

models in visual forms: “to be confident in this kind of a decision support, you need to understand. A 

way to make this easy is that you do this clearly and visually”. At the same time, the team does not only 

want to have the final TCO result visualized, but also to understand its main TCO items as well as the 

system performances that drives them: “you want an end result but still you want to keep track of why 

it is like that”.  

The proposed simulation process uses the CAD model of the design concept to visualize the value model 

results. In this way, the team does not need to know specific components terminology nor understand 

the output from a specific domain model, thus making it easier to interact. Simulation results and value 

scores are mapped to a colour scale to highlight components/variables that are negatively or positively 

affected by a new design. A colour scale ranging from green through yellow to red is used. This colour 

scheme, where green is good and red is bad for the studied objective, is believed to be intuitive to the 

end-user making it approachable and understandable also for non-experts. Presenting results this way 

enables the design team to identify trade-offs and follow cause and effect relations through the model 

hierarchy.  

 

Figure 6. Screenshot, presenting results through colour coded CAD model 
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A challenge here is to identify and quantify how sub-systems or components effect system performance. 

As multiple design variables (e.g. drum width, drum diameter, drum thickness) may be used to define a 

single component or sub-system (e.g. drum), the effect of these design variables must be aggregated. 

This is done using ANOVA. Figure 6, showing a conceptual implementation of the colour code 

functionality within the CAD environment, displays three levels of the model hierarchy. System 

performance models on the right feed the TCO item models (visible in the centre of Figure 6). These 

items are aggregated into the TCO measure on the left. In the example shown, the TCO model indicates 

that the selected engine hood has a negative impact as the engine (not visible in Figure 6) and associated 

engine hood are coloured bronze. Stepping down the model hierarchy shows that the main origin of the 

problem can be found in the operating cost model calculated from the usage scenario model (engine and 

hood coloured red). To understand the impact that engine selection has on operating cost, the user looks 

at contributions from the functional/engineering models. Selecting the operating cost in the hierarchy 

relevant system performance models are displayed (in the example compaction capacity, velocity and 

visibility). Where engine selection has a minor influence on compaction capacity and a significant 

positive impact on machine velocity (coloured bright green) which improves operational efficiency 

hence reducing operating cost. This positive effect is however counteracted by significantly reduced 

operator visibility (coloured dark red). 

Avoiding this trade-off demands finding a different engine concept, maybe looking at other technologies 

able to provide an engine that is both small and powerful. This type of trade-off between system 

performances is not always intuitive, certainly not for non-experts within the group of stakeholders. 

5 DISCUSSION AND CONCLUSIONS 

Verification activities point to the benefit of integrating simulations according to the process presented 

in this paper. In current development projects, where the system to be engineered is becoming 

increasingly complex, the integration of multidisciplinary simulations in a ‘value model’ becomes a 

‘catalysts’ for knowledge generation and negotiation. By modelling and simulating, members are forced 

to synthetize their perceptions about the value of a design and to discuss where conclusions differ. 

Furthermore, the proposed simulation environment allows the team to ‘navigate’ through the multiple 

value contributions of a design alternative. A respondent takes the integration between the colour-coded 

CAD model and the value model as an example: “right now one thinks that CAD is a tool for drawing, 

but this is another concept. I think it is exiting to simulate and wander through this hierarchy of 

objectives”. The proposed demonstrator is considered by industrial practitioners as a step forward in 

making an approach that fits in the ecosystem of tools that companies have at present. In such a context, 

practitioners point to the need of introducing the role of a ‘value specialist’ able to understand 

relationships coming from the simulations that build the value model and facilitate discussion between 

the cross-functional members. 

Future work will concern to the further implementation and verification of the simulation support 

environment for value-driven engineering design. A major challenge is related to the population of the 

models, which require substantial amounts of data and expert knowledge. An interesting future research 

track is related on how to apply Data Mining techniques to support decision makers in populating the 

models part of this simulation environment. Nowadays technology makes it possible to continuously log 

data from a system during its entire lifecycle, and to apply data mining algorithms to discover patterns 

and make predictions. It is appealing to think about the ability to recognize such patterns to improve the 

reliability of the models integrated in the simulation scenario. 
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