Conceptual Framework to Study Team Cohesion in Human-Robot Teams

DS 122: Proceedings of the Design Society: 24th International Conference on Engineering Design (ICED23)

Year: 2023
Editor: Kevin Otto, Boris Eisenbart, Claudia Eckert, Benoit Eynard, Dieter Krause, Josef Oehmen, Nad
Author: Sri Ramoji, Sreeja; Singh, Vishal
Series: ICED
Institution: Indian Institute of Science, Bengaluru
Section: Design Methods
Page(s): 1057-1066
DOI number:


Social Robots, part of current advanced technology, will be integrated into our daily lives across diverse use-case scenarios, including homes, hospitals, workplaces, and recreation. Though the area of Social Robotics has gained traction in recent years, the majority of the studies so far have studied single-human and single-robot interaction. In comparison, Social Robots are increasingly being placed in human teams, likely affecting team dynamics. On the other hand, Engineering teams work together to deliver outstanding results and the processes in these teams are social. We propose that Social robot can be added to engineering human team to enhance team cohesion and performance. Therefore, this paper presents a preliminary framework towards developing a conceptual framework to study team cohesion in Human-Robot Teams (HRTs) in engineering context, looks at different roles of social robot and how the responses, behaviours, emotions of social robots shape outcomes in the engineering team. The research specifically focuses on team cohesion because team cohesion is reportedly one of the most critical concepts in team dynamics. The paper outlines the research objectives, framework and concept workflow.

Keywords: Teamwork, Organizational processes, Research methodologies and methods, Artificial intelligence, Societal consequences

Please sign in to your account

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties. Privacy Policy.