Effects of biophilic restorative experiences on designers' bodies, brains, and minds.

DS 122: Proceedings of the Design Society: 24th International Conference on Engineering Design (ICED23)

Year: 2023
Editor: Kevin Otto, Boris Eisenbart, Claudia Eckert, Benoit Eynard, Dieter Krause, Josef Oehmen, Nad
Author: Ignacio Jr., Paulo; Shealy, Tripp
Series: ICED
Institution: Virginia Tech
Section: Design Methods
Page(s): 1565-1574
DOI number: https://doi.org/10.1017/pds.2023.157
ISBN: -
ISSN: -

Abstract

The research presented in this paper explores a novel method for assessing the effects of biophilic restorative experiences on designers’ cognition by combining the use of physiological, neurocognitive and semantic measures. A total of 12 engineering graduate students participated in a three-step pilot experiment that consisted of (1) a stressor (the Trier Social Stress Test), (2) a destressing intervention (biophilic sound experience), and (3) a design task. Heart rate variability (HRV) was used to track subjects’ autonomic nervous system (ANS) activity. Functional near-infrared spectroscopy (fNIRS) was used to track patterns of brain activation in subjects’ prefrontal cortex (PFC). Changes in design quality were assessed by the semantic space they explored, measured through a natural language processing (NLP) technique. Preliminary findings suggest that an auditory biophilic restorative experience can change designers’ bodies, brains, and minds. Results from this pilot study encourage further exploration of the use of exposure to nature-based stimuli as a method to help enhance engineering design cognition.

Keywords: Bio-inspired design / biomimetics, Design cognition, Semantic data processing, neurocognition, biophilia

Please sign in to your account

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties. Privacy Policy.